Industrial Waste in Poland (2010–2020): A Sectoral View Using Input-Output Models and Structural Decomposition Analysis
DOI:
https://doi.org/10.18778/0208-6018.371.01Keywords:
Input-Output models, waste generation, Leontief models, structural decomposition analysisAbstract
This study examines the evolution of industrial waste generation within the Polish economy over the decade of 2010–2020. Rapid economic growth, structural shifts among sectors, and growing environmental awareness have influenced waste production patterns. While numerous studies have addressed related topics in other contexts, a gap remains in assessing how technological changes and shifts in final demand jointly shape industrial waste generation in Poland.
The article aims to investigate how changes in technology and final demand affected the volume and composition of waste in the Polish economy, thereby providing insights for policymakers and stakeholders seeking to enhance sustainability and resource efficiency.
The research uses Environmental Extended Input-Output (EEIO) models combined with Structural Decomposition Analysis (SDA). Using Input-Output tables for Poland from 2010 and 2020 along with waste generation data aggregated into 17 sectoral clusters, the study decomposes changes in waste output into waste intensity, technological shifts, and final demand components. Further disaggregation captures the effects of product-mix adjustments, changes in demand composition, and sector-specific technological innovations.
Results show that final demand is the dominant driver of increased waste generation. Technological changes produced mixed effects across sectors: the Electricity, Gas, Steam and Air Conditioning Supply sector recorded the largest reduction in waste generation, while the Waste Collection, Treatment and Disposal Activities; Materials Recovery sector experienced a significant increase. Additionally, Mining and Quarrying along with Construction played key roles, with the former undergoing notable technology-driven shifts, and the latter influenced by adjustments in both technology and final demand. These insights provide policymakers with a valuable reference for targeted waste reduction strategies while enhancing the understanding of how economic dynamics and technological progress shape environmental sustainability.
Downloads
References
Bajpai P. (2015), Generation of Waste in Pulp and Paper Mills, [in:] P. Bajpai, Management of Pulp and Paper Mill Waste, Springer, Cham–Heidelberg–New York–Dordrecht–London, pp. 9–17, https://doi.org/10.1007/978-3-319-11788-1_2
Google Scholar
DOI: https://doi.org/10.1007/978-3-319-11788-1_2
Bisello A., Vettorato D., Ludlow D., Baranzelli C. (eds.) (2021), Smart and Sustainable Planning for Cities and Regions: Results of SSPCR 2019 – Open access contributions, Springer, Cham, https://doi.org/10.1007/978-3-030-57764-3
Google Scholar
DOI: https://doi.org/10.1007/978-3-030-57764-3
Brodny J., Tutak M. (2022), Challenges of the Polish coal mining industry in its way to innovative and sustainable development, “Journal of Cleaner Production”, vol. 375, 134061, https://doi.org/10.1016/j.jclepro.2022.134061
Google Scholar
DOI: https://doi.org/10.1016/j.jclepro.2022.134061
Ciuła J., Bajdur W., Gronba-Chyla A., Kwaśnicki P. (2023), Transformation of Municipal Waste Management in Poland Towards a Circular Economy, “Rocznik Ochrona Środowiska”, vol. 25, pp. 374–382, https://doi.org/10.54740/ros.2023.038
Google Scholar
DOI: https://doi.org/10.54740/ros.2023.038
Depczyński R. (2022), The assessment of product groups and efficiency in the use of raw materials and waste management towards sustainable development – case study of the steel manufacturing company in Poland, “Procedia Computer Science”, vol. 207, pp. 4306–4317, https://doi.org/10.1016/j.procs.2022.09.494
Google Scholar
DOI: https://doi.org/10.1016/j.procs.2022.09.494
Dietzenbacher E., Los B. (1998), Structural decomposition techniques: sense and sensitivity, “Economic Systems Research”, vol. 10(4), pp. 307–324, https://doi.org/10.1080/09535319800000023
Google Scholar
DOI: https://doi.org/10.1080/09535319800000023
Domini M., Bertanza G., Vahidzadeh R., Pedrazzani R. (2022), Sewage Sludge Quality and Management for Circular Economy Opportunities in Lombardy, “Applied Sciences”, vol. 12(20), 10391, https://doi.org/10.3390/app122010391
Google Scholar
DOI: https://doi.org/10.3390/app122010391
El-Haggar S.M. (2007), Sustainable Industrial Design and Waste Management: Cradle-to-cradle for Sustainable Development, Burlington: Academic Press, https://doi.org/10.1016/B978-0-12-373623-9.X5000-X
Google Scholar
DOI: https://doi.org/10.1016/B978-0-12-373623-9.X5000-X
European Environment Agency (2022), Early warning assessment related to the 2025 targets for municipal waste and packaging waste: Poland country profile, https://www.eea.europa.eu/publications/many-eu-member-states/poland/view [accessed: 20.01.2025].
Google Scholar
Eurostat (2024a), Generation of waste by waste category, hazardousness and NACE Rev. 2 activity (env_wasgen), https://doi.org/10.2908/env_wasgen
Google Scholar
Eurostat (2024b), Waste electrical and electronic equipment (WEEE) statistics, https://ec.europa.eu/eurostat/databrowser/view/env_waseleeos/default/table?lang=en [accessed: 13.02.2025].
Google Scholar
Fernández-Arias P., Vergara D., Antón-Sancho Á. (2023), Global Review of International Nuclear Waste Management, “Energies”, vol. 16(17), 6215, https://doi.org/10.3390/en16176215
Google Scholar
DOI: https://doi.org/10.3390/en16176215
Filimonau V., De Coteau D.A. (2020), Food waste in hospitality and food services: A systematic literature review, “Journal of Cleaner Production”, vol. 270, 122861, https://doi.org/10.1016/j.jclepro.2020.122861
Google Scholar
DOI: https://doi.org/10.1016/j.jclepro.2020.122861
Gacek K. (2024), Tracing the drivers of waste generation in Poland (2010–2018): a structural decomposition and input–output approach, “Bulletin of Geography. Socio-economic Series”, no. 63, pp. 75–85, https://doi.org/10.12775/bgss-2024-0006
Google Scholar
DOI: https://doi.org/10.12775/bgss-2024-0006
Gawlik L., Mokrzycki E. (2019), Changes in the Structure of Electricity Generation in Poland in View of the EU Climate Package, “Energies”, vol. 12(17), 3323, https://doi.org/10.3390/en12173323
Google Scholar
DOI: https://doi.org/10.3390/en12173323
Grodzińska-Jurczak, M. (2001), Management of industrial and municipal solid wastes in Poland, “Resources, Conservation and Recycling”, vol. 32(2), pp. 85–103, https://doi.org/10.1016/S0921-3449(00)00097-5
Google Scholar
DOI: https://doi.org/10.1016/S0921-3449(00)00097-5
He H., Reynolds Ch.J., Zhou Z., Wang Y., Boland J. (2019), Changes of waste generation in Australia: Insights from structural decomposition analysis, “Waste Management”, vol. 83, pp. 142–150, https://doi.org/10.1016/j.wasman.2018.11.004
Google Scholar
DOI: https://doi.org/10.1016/j.wasman.2018.11.004
Huang B., Wang X., Kua H., Geng Y., Bleischwitz R., Ren J. (2018), Construction and demolition waste management in China through the 3R principle, “Resources, Conservation and Recycling”, vol. 129, pp. 36–44, https://doi.org/10.1016/j.resconrec.2017.09.029
Google Scholar
DOI: https://doi.org/10.1016/j.resconrec.2017.09.029
Kęps W., Jaszczura K. (2020), Instalacje termicznego przekształcania odpadów w Polsce, “Inżynieria Mineralna”, vol. 1(1), pp. 47–50, https://doi.org/10.29227/IM-2020-01-07
Google Scholar
DOI: https://doi.org/10.29227/IM-2020-01-07
KGHM Polska Miedź S.A. (2011), Raport roczny za rok 2010, https://kghm.com/pl/raport-roczny-za-rok-2010 [accessed: 28.01.2025].
Google Scholar
KGHM Polska Miedź S.A. (2021), Zintegrowany Raport Roczny 2020, https://kghm.com/pl/zintegrowany-raport-roczny-2020 [accessed: 28.01.2025].
Google Scholar
Lach Ł. (2022), Optimization based structural decomposition analysis as a tool for supporting environmental policymaking, “Energy Economics”, vol. 115, 106332, https://doi.org/10.1016/j.eneco.2022.106332
Google Scholar
DOI: https://doi.org/10.1016/j.eneco.2022.106332
Lee D., Kim J., Park H.-S. (2022), Characterization of industrial hazardous waste generation in South Korea using input-output approach, “Resources, Conservation and Recycling”, vol. 183, 106365, https://doi.org/10.1016/j.resconrec.2022.106365
Google Scholar
DOI: https://doi.org/10.1016/j.resconrec.2022.106365
Lins M., Zandonadi R.P., Raposo A., Ginani V.C. (2021), Food Waste on Foodservice: An Overview Through the Perspective of Sustainable Dimensions, “Foods”, vol. 10(6), 1175, https://doi.org/10.3390/foods10061175
Google Scholar
DOI: https://doi.org/10.3390/foods10061175
Liu J., Wang R., Tian Y., Zhang M. (2024), The driving mechanisms of industrial air pollution spatial correlation networks: A case study of 168 Chinese cities, “Journal of Cleaner Production”, vol. 470, 143255, https://doi.org/10.1016/j.jclepro.2024.143255
Google Scholar
DOI: https://doi.org/10.1016/j.jclepro.2024.143255
Marszał K., Śniegocki A., Wetmańska Z., Kachi A., Cochran I., Hainaut H., Ledez M. (2020), Renowacja. Panorama niskoemisyjnych inwestycji w sektorze budynków, https://wise-europa.eu/wp-content/uploads/2024/06/Renowacja.-Panorama-niskoemisyjnych-inwestycji-w-sektorze-budynkow.pdf [accessed: 8.01.2025].
Google Scholar
Marszowski R., Iwaszenko S. (2021), Mining in Poland in Light of Energy Transition: Case Study of Changes Based on the Knowledge Economy, “Sustainability”, vol. 13(24), 13649, https://doi.org/10.3390/su132413649
Google Scholar
DOI: https://doi.org/10.3390/su132413649
Meyer D.E., Li M., Ingwersen W.W. (2020), Analyzing economy-scale solid waste generation using the United States environmentally-extended input-output model, “Resources, Conservation and Recycling”, vol. 157, 104795, https://doi.org/10.1016/j.resconrec.2020.104795
Google Scholar
DOI: https://doi.org/10.1016/j.resconrec.2020.104795
Midor K., Michalski K. (eds.) (2015), Górnictwo węgla kamiennego. Inteligentne rozwiązania, Wydawnictwo P.A. NOVA S.A., Gliwice, http://www.stegroup.pl/attachments/article/1/Caly2.pdf [accessed: 18.02.2025].
Google Scholar
Millati R., Cahyono R.B., Ariyanto T., Azzahrani I.N., Putri R.U., Taherzadeh M.J. (2019), Agricultural, Industrial, Municipal, and Forest Wastes: An Overview, [in:] M.J. Taherzadeh, K. Bolton, J. Wong, A. Pandey (eds.), Sustainable Resource Recovery and Zero Waste Approaches, Elsevier, Amsterdam, pp. 1–22, https://doi.org/10.1016/B978-0-444-64200-4.00001-3
Google Scholar
DOI: https://doi.org/10.1016/B978-0-444-64200-4.00001-3
Miller R.E., Blair P.D. (2022), Input-Output Analysis: Foundations and Extensions, Cambridge University Press, New York, https://doi.org/10.1017/9781108676212
Google Scholar
DOI: https://doi.org/10.1017/9781108676212
Mostaghimi K., Behnamian J. (2023), Waste minimization towards waste management and cleaner production strategies: A literature review, “Environmental Development and Sustainability”, vol. 25(11), pp. 12119–12166, https://doi.org/10.1007/s10668-022-02599-7
Google Scholar
DOI: https://doi.org/10.1007/s10668-022-02599-7
Nakamura S., Kondo Y. (2002), Input-Output Analysis of Waste Management, “Journal of Industrial Ecology”, vol. 6(1), pp. 39–63, https://doi.org/10.1162/108819802320971632
Google Scholar
DOI: https://doi.org/10.1162/108819802320971632
Nkuna R., Ijoma G.N., Matambo T.S., Chimwani N. (2022), Accessing Metals from Low-Grade Ores and the Environmental Impact Considerations: A Review of the Perspectives of Conventional versus Bioleaching Strategies, “Minerals”, vol. 12(5), 506, https://doi.org/10.3390/min12050506
Google Scholar
DOI: https://doi.org/10.3390/min12050506
Olejnik D., Krupa M. (2023), Selected Thermal Waste Treatment Plants in Europe: Case Study, “Civil and Environmental Engineering Reports”, vol. 33(3), pp. 1–18, https://doi.org/10.59440/ceer/175240
Google Scholar
DOI: https://doi.org/10.59440/ceer/175240
Pactwa K., Woźniak J., Dudek M. (2020), Coal mining waste in Poland in reference to circular economy principles, “Fuel”, vol. 270, 117493, https://doi.org/10.1016/j.fuel.2020.117493
Google Scholar
DOI: https://doi.org/10.1016/j.fuel.2020.117493
Pohl H.R., Tarkowski S., Buczynska A., Fay M., De Rosa C.T. (2008), Chemical exposures at hazardous waste sites: Experiences from the United States and Poland, “Environmental Toxicology and Pharmacology”, vol. 25(3), pp. 283–291, https://doi.org/10.1016/j.etap.2007.12.005
Google Scholar
DOI: https://doi.org/10.1016/j.etap.2007.12.005
Read Q.D., Brown S., Cuéllar A.D., Finn S.M., Gephart J.A., Marston L.T., Meyer E., Weitz K.A., Muth M.K. (2020), Assessing the environmental impacts of halving food loss and waste along the food supply chain, “Science of The Total Environment”, vol. 712, 136255, https://doi.org/10.1016/j.scitotenv.2019.136255
Google Scholar
DOI: https://doi.org/10.1016/j.scitotenv.2019.136255
Riesenegger L., Hübner A. (2022), Reducing Food Waste at Retail Stores – An Explorative Study, “Sustainability”, vol. 14(5), 2494, https://doi.org/10.3390/su14052494
Google Scholar
DOI: https://doi.org/10.3390/su14052494
Ruiz-Peñalver S.M., Rodríguez M., Camacho J.A. (2019), A waste generation input output analysis: The case of Spain, “Journal of Cleaner Production”, vol. 210, pp. 1475–1482, https://doi.org/10.1016/j.jclepro.2018.11.145
Google Scholar
DOI: https://doi.org/10.1016/j.jclepro.2018.11.145
Santucci L., Carol E., Tanjal C. (2018), Industrial waste as a source of surface and groundwater pollution for more than half a century in a sector of the Río de la Plata coastal plain (Argentina), “Chemosphere”, vol. 206, pp. 727–735, https://doi.org/10.1016/j.chemosphere.2018.05.084
Google Scholar
DOI: https://doi.org/10.1016/j.chemosphere.2018.05.084
Song J., Yang W., Li Z., Higano Y., Wang X. (2016), Discovering the energy, economic and environmental potentials of urban wastes: An input–output model for a metropolis case, “Energy Conversion and Management”, vol. 114, pp. 168–179, https://doi.org/10.1016/j.enconman.2016.02.014
Google Scholar
DOI: https://doi.org/10.1016/j.enconman.2016.02.014
Statistics Poland (2015), Input-output table at basic prices in 2010, https://stat.gov.pl/en/topics/national-accounts/annual-national-accounts/input-output-table-at-basic-prices-in-2015,5,3.html [accessed: 14.12.2024].
Google Scholar
Statistics Poland (2021a), Energia ze źródeł odnawialnych w 2020 r., https://stat.gov.pl/download/gfx/portalinformacyjny/pl/defaultaktualnosci/5485/10/4/1/energia_ze_zrodel_odnawialnych_w_2020_r..pdf [accessed: 21.01.2025].
Google Scholar
Statistics Poland (2021b), Produkcja budowlano-montażowa w 2020 roku, https://stat.gov.pl/obszary-tematyczne/przemysl-budownictwo-srodki-trwale/budownictwo/produkcja-budowlano-montazowa-w-2020-roku,12,6.html (accessed: January 21.01.2025).
Google Scholar
Statistics Poland (2023), Environment 2023, https://stat.gov.pl/en/topics/environment-energy/environment/environment-2023,1,15.html [accessed: 14.12.2024].
Google Scholar
Statistics Poland (2024), Input-output table at basic prices in 2020, https://stat.gov.pl/en/topics/national-accounts/annual-national-accounts/input-output-table-at-basic-prices-in-2020,5,4.html [accessed: 14.12.2024].
Google Scholar
Towa E., Zeller V., Achten W.M.J. (2020), Input-output models and waste management analysis: A critical review, “Journal of Cleaner Production”, vol. 249, 119359, https://doi.org/10.1016/j.jclepro.2019.119359
Google Scholar
DOI: https://doi.org/10.1016/j.jclepro.2019.119359
U.S. Environmental Protection Agency (2020), Advancing Sustainable Materials Management: 2018 Fact Sheet, https://www.epa.gov/sites/default/files/2021-01/documents/2018_ff_fact_sheet_dec_2020_fnl_508.pdf [accessed: 11.12.2024].
Google Scholar
World Steel Association (2021), Steel industry co-products, https://worldsteel.org/wp-content/uploads/Fact-sheet-Steel-industry-co-products.pdf [accessed: 25.01.2025].
Google Scholar
World Wide Fund for Nature (2021), Driven to waste: The global impact of food loss and waste on farms, https://wwf.panda.org/discover/our_focus/food_practice/food_loss_and_waste/driven_to_waste_global_food_loss_on_farms/ [accessed: 5.02.2025].
Google Scholar
Yang Y., Ingwersen W.W., Hawkins T.R., Srocka M., Meyer D.E. (2017), USEEIO: A new and transparent United States environmentally-extended input-output model, “Journal of Cleaner Production”, vol. 158, pp. 308–318, https://doi.org/10.1016/j.jclepro.2017.04.150
Google Scholar
DOI: https://doi.org/10.1016/j.jclepro.2017.04.150
Zhang Y., Wang L., Li X., Chen J. (2023), A comprehensive review of toxicity of coal fly ash and its leachate in aquatic environment, “Ecotoxicology and Environmental Safety”, vol. 256, 114879, https://doi.org/10.1016/j.ecoenv.2023.114879
Google Scholar
DOI: https://doi.org/10.1016/j.ecoenv.2023.114879





