Degradation of Air vs. Quality of Life – Spatial Panel Analysis

Authors

DOI:

https://doi.org/10.18778/0208-6018.292.10

Abstract

The main purpose of the paper is to identify and analyse a correlation between excessive air pollution, well-being and the cost of living. The analysis was performed using spatial panel models. Two research hypotheses were confirmed. One assumed a negative impact of excessive air degradation on the level of socio-economic development. The other concerned an increase in the cost of living due to air pollution. 32 selected European countries were studied from 1990 to 2009. The level of socio-economic well-being was expressed by measures of the GDP per capita and HDI The cost of living was presented by means of a measure designed by the author – COSTS. Air quality was expressed in terms of S02, CO, NOx, GHG, C02 and a constructed synthetic measure – AIRQ.

Downloads

Download data is not yet available.

References

Antczak E. (2011), Degradacja powietrza a rozwój gospodarczy w Europie. Modele panelowe z efektami przestrzennymi, Wydawnictwo UEK w Krakowie.
Google Scholar

Antczak E. (2012), Wybrane aspekty zrównoważonego rozwoju Europy. Analizy przestrzenno- czasowe, Łódź, Wyd. Biblioteka.
Google Scholar

Antczak E., Suchecka J. (2011), Spatial autoregressive panel data models applied to evaluate the levels of sustainable development in European countries, Folia Oeconomica Acta Universitatis Lodziensis.
Google Scholar

Baltagi B.H., Liu L. (2011), Instrumental Variable Estimation of a Spatial Autoregressive Panel Model with Random Effects, Economics Letters, 111.
Google Scholar DOI: https://doi.org/10.2139/ssrn.1805737

Bensalah N. (ed.) (2012), Pitting Corrosion, InTech, Crotaria.
Google Scholar DOI: https://doi.org/10.5772/1849

Board of Strategic Advisers to The Prime Minister of Poland (2009), Poland 2030. Development challenges - report summary, Warszawa.
Google Scholar

Elhorst J.P. (2009), Spatial Panel Data Models, In MM Fischer, A Getis (eds.), Handbook of Applied Spatial Analysis, Springer-Verlag,
Google Scholar DOI: https://doi.org/10.1007/978-3-642-03647-7_19

Gillette D.G. (1975), Sulphur Dioxide and Material Damage, Journal of the Air Pollution Control Association, Volume 25, No. 12, Pittsburgh.
Google Scholar DOI: https://doi.org/10.1080/00022470.1975.10470202

Institute of Meterology&Water Manangement (2009), Wpływ zmian klimatu na środowisko, gospodarkę i społeczeństwo, Project: Climate.
Google Scholar

Kapoor M, Kelejian H.H, Prucha I.R (2007), Panel Data Model with Spatially Correlated Error Components, Journal of Econometrics, 140(1).
Google Scholar DOI: https://doi.org/10.1016/j.jeconom.2006.09.004

Kluth K. (2007), Konwergencja gospodarcza w zakresie kryteriów Traktatu z Maastricht-analiza ekonometryczna, Nicolaus Copernicus University in Toruń.
Google Scholar

Levin A., Lin C, Chu C.J., Unit Root Tests in Panel data: Asymptotic and Finite-Sample Properties, Journal of Economics, 108, 2002.
Google Scholar DOI: https://doi.org/10.1016/S0304-4076(01)00098-7

Millo G, Piras G. (2012), splm: Spatial Panel Data Models in R, Journal of Statistical Software April 2012, Volume 47, Issue 1.
Google Scholar DOI: https://doi.org/10.18637/jss.v047.i01

Suchecki B. (ed.) et al. (2010), Ekonometria przestrzenna. Metody i modele analizy danych przestrzennych, Beck.
Google Scholar

Suchecki B. (ed.) et al. (2012), Ekonometria przestrzenna II. Modele zaawansowane., BECK, Warszawa.
Google Scholar

Tobler W.R. (1970), A computer movie simulating urban growth in the Detroit region, Economic Geography 46, USA 1970.
Google Scholar DOI: https://doi.org/10.2307/143141

Downloads

Published

2013-01-01

How to Cite

Antczak, E. (2013). Degradation of Air vs. Quality of Life – Spatial Panel Analysis. Acta Universitatis Lodziensis. Folia Oeconomica, (292), 117–129. https://doi.org/10.18778/0208-6018.292.10

Issue

Section

Articles