Degradation of Air vs. Quality of Life – Spatial Panel Analysis
DOI:
https://doi.org/10.18778/0208-6018.292.10Abstract
The main purpose of the paper is to identify and analyse a correlation between excessive air pollution, well-being and the cost of living. The analysis was performed using spatial panel models. Two research hypotheses were confirmed. One assumed a negative impact of excessive air degradation on the level of socio-economic development. The other concerned an increase in the cost of living due to air pollution. 32 selected European countries were studied from 1990 to 2009. The level of socio-economic well-being was expressed by measures of the GDP per capita and HDI The cost of living was presented by means of a measure designed by the author – COSTS. Air quality was expressed in terms of S02, CO, NOx, GHG, C02 and a constructed synthetic measure – AIRQ.
Downloads
References
Antczak E. (2011), Degradacja powietrza a rozwój gospodarczy w Europie. Modele panelowe z efektami przestrzennymi, Wydawnictwo UEK w Krakowie.
Google Scholar
Antczak E. (2012), Wybrane aspekty zrównoważonego rozwoju Europy. Analizy przestrzenno- czasowe, Łódź, Wyd. Biblioteka.
Google Scholar
Antczak E., Suchecka J. (2011), Spatial autoregressive panel data models applied to evaluate the levels of sustainable development in European countries, Folia Oeconomica Acta Universitatis Lodziensis.
Google Scholar
Baltagi B.H., Liu L. (2011), Instrumental Variable Estimation of a Spatial Autoregressive Panel Model with Random Effects, Economics Letters, 111.
Google Scholar
DOI: https://doi.org/10.2139/ssrn.1805737
Bensalah N. (ed.) (2012), Pitting Corrosion, InTech, Crotaria.
Google Scholar
DOI: https://doi.org/10.5772/1849
Board of Strategic Advisers to The Prime Minister of Poland (2009), Poland 2030. Development challenges - report summary, Warszawa.
Google Scholar
Elhorst J.P. (2009), Spatial Panel Data Models, In MM Fischer, A Getis (eds.), Handbook of Applied Spatial Analysis, Springer-Verlag,
Google Scholar
DOI: https://doi.org/10.1007/978-3-642-03647-7_19
Gillette D.G. (1975), Sulphur Dioxide and Material Damage, Journal of the Air Pollution Control Association, Volume 25, No. 12, Pittsburgh.
Google Scholar
DOI: https://doi.org/10.1080/00022470.1975.10470202
Institute of Meterology&Water Manangement (2009), Wpływ zmian klimatu na środowisko, gospodarkę i społeczeństwo, Project: Climate.
Google Scholar
Kapoor M, Kelejian H.H, Prucha I.R (2007), Panel Data Model with Spatially Correlated Error Components, Journal of Econometrics, 140(1).
Google Scholar
DOI: https://doi.org/10.1016/j.jeconom.2006.09.004
Kluth K. (2007), Konwergencja gospodarcza w zakresie kryteriów Traktatu z Maastricht-analiza ekonometryczna, Nicolaus Copernicus University in Toruń.
Google Scholar
Levin A., Lin C, Chu C.J., Unit Root Tests in Panel data: Asymptotic and Finite-Sample Properties, Journal of Economics, 108, 2002.
Google Scholar
DOI: https://doi.org/10.1016/S0304-4076(01)00098-7
Millo G, Piras G. (2012), splm: Spatial Panel Data Models in R, Journal of Statistical Software April 2012, Volume 47, Issue 1.
Google Scholar
DOI: https://doi.org/10.18637/jss.v047.i01
Suchecki B. (ed.) et al. (2010), Ekonometria przestrzenna. Metody i modele analizy danych przestrzennych, Beck.
Google Scholar
Suchecki B. (ed.) et al. (2012), Ekonometria przestrzenna II. Modele zaawansowane., BECK, Warszawa.
Google Scholar
Tobler W.R. (1970), A computer movie simulating urban growth in the Detroit region, Economic Geography 46, USA 1970.
Google Scholar
DOI: https://doi.org/10.2307/143141





