Odpady przemysłowe w Polsce w latach 2010–2020: ujęcie sektorowe z wykorzystaniem modeli przepływów międzygałęziowych i dekompozycji strukturalnej

Autor

DOI:

https://doi.org/10.18778/0208-6018.371.01

Słowa kluczowe:

odpady przemysłowe, modele przepływów międzygałęziowych, modele Leontiefa, dekompozycja strukturalna

Abstrakt

Celem artykułu jest zbadanie, w jaki sposób zmiany technologiczne oraz zmiany w popycie finalnym wpłynęły na wielkość i strukturę odpadów przemysłowych w Polsce w latach 2010–2020. Zastosowane zostały rozszerzone modele przepływów międzygałęziowych w połączeniu z analizą dekompozycji strukturalnej. Z wykorzystaniem tablic przepływów międzygałęziowych dla lat 2010 i 2020 oraz danych o wytwarzaniu odpadów, zagregowanych w 17 klastrów sektorowych, rozłożono zmiany w ilości generowanych odpadów na składniki intensywności odpadowej, postęp techniczny i ewolucję popytu finalnego wraz z ich dalszym podziałem. Wyniki wskazują, że głównym czynnikiem wzrostu wytwarzania odpadów był rosnący popyt finalny, natomiast wpływ zmian technologicznych był zróżnicowany – sektor wytwarzania i zaopatrzenia w energię elektryczną, gaz, parę i klimatyzację odnotował największy spadek odpadów, podczas gdy sektor gospodarki odpadami wyraźnie je zwiększył. Górnictwo i wydobywanie oraz budownictwo odegrały kluczową rolę: pierwsze dzięki zmianom technologicznym, drugie poprzez połączone efekty technologii i popytu. Otrzymane wnioski dostarczają podstaw do projektowania ukierunkowanych strategii redukcji odpadów i pogłębiają zrozumienie zależności między dynamiką gospodarczą, postępem technologicznym a zrównoważonym rozwojem.

Pobrania

Brak dostępnych danych do wyświetlenia.

Bibliografia

Bajpai P. (2015), Generation of Waste in Pulp and Paper Mills, [in:] P. Bajpai, Management of Pulp and Paper Mill Waste, Springer, Cham–Heidelberg–New York–Dordrecht–London, pp. 9–17, https://doi.org/10.1007/978-3-319-11788-1_2
Google Scholar DOI: https://doi.org/10.1007/978-3-319-11788-1_2

Bisello A., Vettorato D., Ludlow D., Baranzelli C. (eds.) (2021), Smart and Sustainable Planning for Cities and Regions: Results of SSPCR 2019 – Open access contributions, Springer, Cham, https://doi.org/10.1007/978-3-030-57764-3
Google Scholar DOI: https://doi.org/10.1007/978-3-030-57764-3

Brodny J., Tutak M. (2022), Challenges of the Polish coal mining industry in its way to innovative and sustainable development, “Journal of Cleaner Production”, vol. 375, 134061, https://doi.org/10.1016/j.jclepro.2022.134061
Google Scholar DOI: https://doi.org/10.1016/j.jclepro.2022.134061

Ciuła J., Bajdur W., Gronba-Chyla A., Kwaśnicki P. (2023), Transformation of Municipal Waste Management in Poland Towards a Circular Economy, “Rocznik Ochrona Środowiska”, vol. 25, pp. 374–382, https://doi.org/10.54740/ros.2023.038
Google Scholar DOI: https://doi.org/10.54740/ros.2023.038

Depczyński R. (2022), The assessment of product groups and efficiency in the use of raw materials and waste management towards sustainable development – case study of the steel manufacturing company in Poland, “Procedia Computer Science”, vol. 207, pp. 4306–4317, https://doi.org/10.1016/j.procs.2022.09.494
Google Scholar DOI: https://doi.org/10.1016/j.procs.2022.09.494

Dietzenbacher E., Los B. (1998), Structural decomposition techniques: sense and sensitivity, “Economic Systems Research”, vol. 10(4), pp. 307–324, https://doi.org/10.1080/09535319800000023
Google Scholar DOI: https://doi.org/10.1080/09535319800000023

Domini M., Bertanza G., Vahidzadeh R., Pedrazzani R. (2022), Sewage Sludge Quality and Management for Circular Economy Opportunities in Lombardy, “Applied Sciences”, vol. 12(20), 10391, https://doi.org/10.3390/app122010391
Google Scholar DOI: https://doi.org/10.3390/app122010391

El-Haggar S.M. (2007), Sustainable Industrial Design and Waste Management: Cradle-to-cradle for Sustainable Development, Burlington: Academic Press, https://doi.org/10.1016/B978-0-12-373623-9.X5000-X
Google Scholar DOI: https://doi.org/10.1016/B978-0-12-373623-9.X5000-X

European Environment Agency (2022), Early warning assessment related to the 2025 targets for municipal waste and packaging waste: Poland country profile, https://www.eea.europa.eu/publications/many-eu-member-states/poland/view [accessed: 20.01.2025].
Google Scholar

Eurostat (2024a), Generation of waste by waste category, hazardousness and NACE Rev. 2 activity (env_wasgen), https://doi.org/10.2908/env_wasgen
Google Scholar

Eurostat (2024b), Waste electrical and electronic equipment (WEEE) statistics, https://ec.europa.eu/eurostat/databrowser/view/env_waseleeos/default/table?lang=en [accessed: 13.02.2025].
Google Scholar

Fernández-Arias P., Vergara D., Antón-Sancho Á. (2023), Global Review of International Nuclear Waste Management, “Energies”, vol. 16(17), 6215, https://doi.org/10.3390/en16176215
Google Scholar DOI: https://doi.org/10.3390/en16176215

Filimonau V., De Coteau D.A. (2020), Food waste in hospitality and food services: A systematic literature review, “Journal of Cleaner Production”, vol. 270, 122861, https://doi.org/10.1016/j.jclepro.2020.122861
Google Scholar DOI: https://doi.org/10.1016/j.jclepro.2020.122861

Gacek K. (2024), Tracing the drivers of waste generation in Poland (2010–2018): a structural decomposition and input–output approach, “Bulletin of Geography. Socio-economic Series”, no. 63, pp. 75–85, https://doi.org/10.12775/bgss-2024-0006
Google Scholar DOI: https://doi.org/10.12775/bgss-2024-0006

Gawlik L., Mokrzycki E. (2019), Changes in the Structure of Electricity Generation in Poland in View of the EU Climate Package, “Energies”, vol. 12(17), 3323, https://doi.org/10.3390/en12173323
Google Scholar DOI: https://doi.org/10.3390/en12173323

Grodzińska-Jurczak, M. (2001), Management of industrial and municipal solid wastes in Poland, “Resources, Conservation and Recycling”, vol. 32(2), pp. 85–103, https://doi.org/10.1016/S0921-3449(00)00097-5
Google Scholar DOI: https://doi.org/10.1016/S0921-3449(00)00097-5

He H., Reynolds Ch.J., Zhou Z., Wang Y., Boland J. (2019), Changes of waste generation in Australia: Insights from structural decomposition analysis, “Waste Management”, vol. 83, pp. 142–150, https://doi.org/10.1016/j.wasman.2018.11.004
Google Scholar DOI: https://doi.org/10.1016/j.wasman.2018.11.004

Huang B., Wang X., Kua H., Geng Y., Bleischwitz R., Ren J. (2018), Construction and demolition waste management in China through the 3R principle, “Resources, Conservation and Recycling”, vol. 129, pp. 36–44, https://doi.org/10.1016/j.resconrec.2017.09.029
Google Scholar DOI: https://doi.org/10.1016/j.resconrec.2017.09.029

Kęps W., Jaszczura K. (2020), Instalacje termicznego przekształcania odpadów w Polsce, “Inżynieria Mineralna”, vol. 1(1), pp. 47–50, https://doi.org/10.29227/IM-2020-01-07
Google Scholar DOI: https://doi.org/10.29227/IM-2020-01-07

KGHM Polska Miedź S.A. (2011), Raport roczny za rok 2010, https://kghm.com/pl/raport-roczny-za-rok-2010 [accessed: 28.01.2025].
Google Scholar

KGHM Polska Miedź S.A. (2021), Zintegrowany Raport Roczny 2020, https://kghm.com/pl/zintegrowany-raport-roczny-2020 [accessed: 28.01.2025].
Google Scholar

Lach Ł. (2022), Optimization based structural decomposition analysis as a tool for supporting environmental policymaking, “Energy Economics”, vol. 115, 106332, https://doi.org/10.1016/j.eneco.2022.106332
Google Scholar DOI: https://doi.org/10.1016/j.eneco.2022.106332

Lee D., Kim J., Park H.-S. (2022), Characterization of industrial hazardous waste generation in South Korea using input-output approach, “Resources, Conservation and Recycling”, vol. 183, 106365, https://doi.org/10.1016/j.resconrec.2022.106365
Google Scholar DOI: https://doi.org/10.1016/j.resconrec.2022.106365

Lins M., Zandonadi R.P., Raposo A., Ginani V.C. (2021), Food Waste on Foodservice: An Overview Through the Perspective of Sustainable Dimensions, “Foods”, vol. 10(6), 1175, https://doi.org/10.3390/foods10061175
Google Scholar DOI: https://doi.org/10.3390/foods10061175

Liu J., Wang R., Tian Y., Zhang M. (2024), The driving mechanisms of industrial air pollution spatial correlation networks: A case study of 168 Chinese cities, “Journal of Cleaner Production”, vol. 470, 143255, https://doi.org/10.1016/j.jclepro.2024.143255
Google Scholar DOI: https://doi.org/10.1016/j.jclepro.2024.143255

Marszał K., Śniegocki A., Wetmańska Z., Kachi A., Cochran I., Hainaut H., Ledez M. (2020), Renowacja. Panorama niskoemisyjnych inwestycji w sektorze budynków, https://wise-europa.eu/wp-content/uploads/2024/06/Renowacja.-Panorama-niskoemisyjnych-inwestycji-w-sektorze-budynkow.pdf [accessed: 8.01.2025].
Google Scholar

Marszowski R., Iwaszenko S. (2021), Mining in Poland in Light of Energy Transition: Case Study of Changes Based on the Knowledge Economy, “Sustainability”, vol. 13(24), 13649, https://doi.org/10.3390/su132413649
Google Scholar DOI: https://doi.org/10.3390/su132413649

Meyer D.E., Li M., Ingwersen W.W. (2020), Analyzing economy-scale solid waste generation using the United States environmentally-extended input-output model, “Resources, Conservation and Recycling”, vol. 157, 104795, https://doi.org/10.1016/j.resconrec.2020.104795
Google Scholar DOI: https://doi.org/10.1016/j.resconrec.2020.104795

Midor K., Michalski K. (eds.) (2015), Górnictwo węgla kamiennego. Inteligentne rozwiązania, Wydawnictwo P.A. NOVA S.A., Gliwice, http://www.stegroup.pl/attachments/article/1/Caly2.pdf [accessed: 18.02.2025].
Google Scholar

Millati R., Cahyono R.B., Ariyanto T., Azzahrani I.N., Putri R.U., Taherzadeh M.J. (2019), Agricultural, Industrial, Municipal, and Forest Wastes: An Overview, [in:] M.J. Taherzadeh, K. Bolton, J. Wong, A. Pandey (eds.), Sustainable Resource Recovery and Zero Waste Approaches, Elsevier, Amsterdam, pp. 1–22, https://doi.org/10.1016/B978-0-444-64200-4.00001-3
Google Scholar DOI: https://doi.org/10.1016/B978-0-444-64200-4.00001-3

Miller R.E., Blair P.D. (2022), Input-Output Analysis: Foundations and Extensions, Cambridge University Press, New York, https://doi.org/10.1017/9781108676212
Google Scholar DOI: https://doi.org/10.1017/9781108676212

Mostaghimi K., Behnamian J. (2023), Waste minimization towards waste management and cleaner production strategies: A literature review, “Environmental Development and Sustainability”, vol. 25(11), pp. 12119–12166, https://doi.org/10.1007/s10668-022-02599-7
Google Scholar DOI: https://doi.org/10.1007/s10668-022-02599-7

Nakamura S., Kondo Y. (2002), Input-Output Analysis of Waste Management, “Journal of Industrial Ecology”, vol. 6(1), pp. 39–63, https://doi.org/10.1162/108819802320971632
Google Scholar DOI: https://doi.org/10.1162/108819802320971632

Nkuna R., Ijoma G.N., Matambo T.S., Chimwani N. (2022), Accessing Metals from Low-Grade Ores and the Environmental Impact Considerations: A Review of the Perspectives of Conventional versus Bioleaching Strategies, “Minerals”, vol. 12(5), 506, https://doi.org/10.3390/min12050506
Google Scholar DOI: https://doi.org/10.3390/min12050506

Olejnik D., Krupa M. (2023), Selected Thermal Waste Treatment Plants in Europe: Case Study, “Civil and Environmental Engineering Reports”, vol. 33(3), pp. 1–18, https://doi.org/10.59440/ceer/175240
Google Scholar DOI: https://doi.org/10.59440/ceer/175240

Pactwa K., Woźniak J., Dudek M. (2020), Coal mining waste in Poland in reference to circular economy principles, “Fuel”, vol. 270, 117493, https://doi.org/10.1016/j.fuel.2020.117493
Google Scholar DOI: https://doi.org/10.1016/j.fuel.2020.117493

Pohl H.R., Tarkowski S., Buczynska A., Fay M., De Rosa C.T. (2008), Chemical exposures at hazardous waste sites: Experiences from the United States and Poland, “Environmental Toxicology and Pharmacology”, vol. 25(3), pp. 283–291, https://doi.org/10.1016/j.etap.2007.12.005
Google Scholar DOI: https://doi.org/10.1016/j.etap.2007.12.005

Read Q.D., Brown S., Cuéllar A.D., Finn S.M., Gephart J.A., Marston L.T., Meyer E., Weitz K.A., Muth M.K. (2020), Assessing the environmental impacts of halving food loss and waste along the food supply chain, “Science of The Total Environment”, vol. 712, 136255, https://doi.org/10.1016/j.scitotenv.2019.136255
Google Scholar DOI: https://doi.org/10.1016/j.scitotenv.2019.136255

Riesenegger L., Hübner A. (2022), Reducing Food Waste at Retail Stores – An Explorative Study, “Sustainability”, vol. 14(5), 2494, https://doi.org/10.3390/su14052494
Google Scholar DOI: https://doi.org/10.3390/su14052494

Ruiz-Peñalver S.M., Rodríguez M., Camacho J.A. (2019), A waste generation input output analysis: The case of Spain, “Journal of Cleaner Production”, vol. 210, pp. 1475–1482, https://doi.org/10.1016/j.jclepro.2018.11.145
Google Scholar DOI: https://doi.org/10.1016/j.jclepro.2018.11.145

Santucci L., Carol E., Tanjal C. (2018), Industrial waste as a source of surface and groundwater pollution for more than half a century in a sector of the Río de la Plata coastal plain (Argentina), “Chemosphere”, vol. 206, pp. 727–735, https://doi.org/10.1016/j.chemosphere.2018.05.084
Google Scholar DOI: https://doi.org/10.1016/j.chemosphere.2018.05.084

Song J., Yang W., Li Z., Higano Y., Wang X. (2016), Discovering the energy, economic and environmental potentials of urban wastes: An input–output model for a metropolis case, “Energy Conversion and Management”, vol. 114, pp. 168–179, https://doi.org/10.1016/j.enconman.2016.02.014
Google Scholar DOI: https://doi.org/10.1016/j.enconman.2016.02.014

Statistics Poland (2015), Input-output table at basic prices in 2010, https://stat.gov.pl/en/topics/national-accounts/annual-national-accounts/input-output-table-at-basic-prices-in-2015,5,3.html [accessed: 14.12.2024].
Google Scholar

Statistics Poland (2021a), Energia ze źródeł odnawialnych w 2020 r., https://stat.gov.pl/download/gfx/portalinformacyjny/pl/defaultaktualnosci/5485/10/4/1/energia_ze_zrodel_odnawialnych_w_2020_r..pdf [accessed: 21.01.2025].
Google Scholar

Statistics Poland (2021b), Produkcja budowlano-montażowa w 2020 roku, https://stat.gov.pl/obszary-tematyczne/przemysl-budownictwo-srodki-trwale/budownictwo/produkcja-budowlano-montazowa-w-2020-roku,12,6.html (accessed: January 21.01.2025).
Google Scholar

Statistics Poland (2023), Environment 2023, https://stat.gov.pl/en/topics/environment-energy/environment/environment-2023,1,15.html [accessed: 14.12.2024].
Google Scholar

Statistics Poland (2024), Input-output table at basic prices in 2020, https://stat.gov.pl/en/topics/national-accounts/annual-national-accounts/input-output-table-at-basic-prices-in-2020,5,4.html [accessed: 14.12.2024].
Google Scholar

Towa E., Zeller V., Achten W.M.J. (2020), Input-output models and waste management analysis: A critical review, “Journal of Cleaner Production”, vol. 249, 119359, https://doi.org/10.1016/j.jclepro.2019.119359
Google Scholar DOI: https://doi.org/10.1016/j.jclepro.2019.119359

U.S. Environmental Protection Agency (2020), Advancing Sustainable Materials Management: 2018 Fact Sheet, https://www.epa.gov/sites/default/files/2021-01/documents/2018_ff_fact_sheet_dec_2020_fnl_508.pdf [accessed: 11.12.2024].
Google Scholar

World Steel Association (2021), Steel industry co-products, https://worldsteel.org/wp-content/uploads/Fact-sheet-Steel-industry-co-products.pdf [accessed: 25.01.2025].
Google Scholar

World Wide Fund for Nature (2021), Driven to waste: The global impact of food loss and waste on farms, https://wwf.panda.org/discover/our_focus/food_practice/food_loss_and_waste/driven_to_waste_global_food_loss_on_farms/ [accessed: 5.02.2025].
Google Scholar

Yang Y., Ingwersen W.W., Hawkins T.R., Srocka M., Meyer D.E. (2017), USEEIO: A new and transparent United States environmentally-extended input-output model, “Journal of Cleaner Production”, vol. 158, pp. 308–318, https://doi.org/10.1016/j.jclepro.2017.04.150
Google Scholar DOI: https://doi.org/10.1016/j.jclepro.2017.04.150

Zhang Y., Wang L., Li X., Chen J. (2023), A comprehensive review of toxicity of coal fly ash and its leachate in aquatic environment, “Ecotoxicology and Environmental Safety”, vol. 256, 114879, https://doi.org/10.1016/j.ecoenv.2023.114879
Google Scholar DOI: https://doi.org/10.1016/j.ecoenv.2023.114879

Opublikowane

2025-07-08

Jak cytować

Gacek, K. (2025). Odpady przemysłowe w Polsce w latach 2010–2020: ujęcie sektorowe z wykorzystaniem modeli przepływów międzygałęziowych i dekompozycji strukturalnej. Acta Universitatis Lodziensis. Folia Oeconomica, 2(371), 1–24. https://doi.org/10.18778/0208-6018.371.01

Numer

Dział

Artykuł