The Critical Role of Dopamine in the Evolution of Human Intelligence and Thermal Tolerance

Authors

DOI:

https://doi.org/10.18778/1898-6773.88.4.02

Keywords:

dopamine, intelligence, endurance, evolution, human

Abstract

Modern humans are unique among anthropoids in many key features, including our advanced intelligence, large brain-body size, thermal tolerance, and endurance capability. The objective of this theoretical review is to update the theory of Previc (1999) postulating the importance of dopamine in human evolution by synthesizing newer findings concerning dopamine’s role in human intellectual and endurance capabilities. Recent evidence further supports the putative role of dopamine in advanced human intelligence (especially cognitive flexibility) and thermal tolerance and endurance. One key breakthrough is a collection of recent studies demonstrating a uniquely human dopaminergic innervation of the striatum and prefrontal cortex—both essential to human cognition. Another potentially important finding is the human-specific mutation of an enhancer to the EN1 gene that controls eccrine gland formation and plays a major role in the development of dopaminergic brain systems. A plausible evolutionary scenario is put forth in which the enhanced thermal capabilities linked to dopaminergic evolution may have gradually led to the enhanced intellects of modern humans.

Downloads

Download data is not yet available.

References

Aldea D, Atsuta Y, Kokalari B., Schaffner SF., Prasasya RD, Aharoni A, Dingwall HL, Warder B, Kamberov YG. 2021. Repeated mutation of a developmental enhancer contributed to human thermoregulatory evolution. Proc Natl Acad Sci USA 118(16): e2021722118. https://doi.org/10.1073/pnas.2021722118
View in Google Scholar DOI: https://doi.org/10.1073/pnas.2021722118

Aldea D, Kamberov YG. 2022. En1 sweat we trust: how the evolution of an Engrailed 1 enhancer made humans the sweatiest ape. Temperature 9(4): 303–5. https://doi.org/10.1080/23328940.2021.2019548
View in Google Scholar DOI: https://doi.org/10.1080/23328940.2021.2019548

Alves dos Santos MT, Smidt MP. 2011. En1 and Wnt signaling in midbrain dopaminergic neuronal development. Neural Dev 6: 23. https://doi.org/10.1186/1749-8104-6-23
View in Google Scholar DOI: https://doi.org/10.1186/1749-8104-6-23

Amoasii L, Sanchez-Ortiz E, Fujikawa T, Elmquist JK, Bassel-Duby R, Olson EN. 2019. NURR1 activation in skeletal muscle controls systemic energy homeostasis. Proc Natl Acad Sci USA 116(23): 11299–308. https://doi.org/10.1073/pnas.1902490116
View in Google Scholar DOI: https://doi.org/10.1073/pnas.1902490116

Balthazar CH, Leite LH, Ribeiro RM, Soares DD, Coimbra CC. 2010. Effects of blockade of central dopamine D1 and D2 receptors on thermoregulation, metabolic rate and running performance. Pharmacol Rep 62(1): 54-61. https://doi.org/10.1016/s1734-1140(10)70242-5
View in Google Scholar DOI: https://doi.org/10.1016/S1734-1140(10)70242-5

Barr WA, Pobiner B, Rowan J, Du A, Faith JT. 2022. No sustained increase in zooarchaeological evidence for carnivory after the appearance of Homo erectus. Proc Natl Acad Sci USA 119(5): e2115540119. https://doi.org/10.1073/pnas.2115540119
View in Google Scholar DOI: https://doi.org/10.1073/pnas.2115540119

Bauer BA, Rogers PJ., Miller TD., Bove AA, Tyce GM. 1989. Exercise training produces changes in free and conjugated catecholamines. Med Sci Sports Exerc 21(5): 558–562.
View in Google Scholar DOI: https://doi.org/10.1249/00005768-198910000-00010

Beasley DE, Koltz AM, Lambert JE, Fierer N, Dunn RR. 2015. The evolution of stomach acidity and its relevance to the human microbiome. PloS One 10(7): e0134116. https://doi.org/10.1371/journal.pone.0134116
View in Google Scholar DOI: https://doi.org/10.1371/journal.pone.0134116

Bednarik RG. 1995. Concept-mediated marking in the lower Palaeolithic. Curr Anthropol 36(4): 605–34. http://dx.doi.org/10.1086/204406
View in Google Scholar DOI: https://doi.org/10.1086/204406

Benyamin B, Pourcain B, Davis OS, Davies G, Hansell NK, Brion MJ, Kirkpatrick RM, Cents RA, Franić S, Miller MB, Haworth CM, Meaburn E, Price TS, Evans DM, Timpson N, Kemp J, Ring S, McArdle W, Medland SE, Yang J, … Visscher PM. 2014. Childhood intelligence is heritable, highly polygenic and associated with FNBP1L. Mol Psychiatry 19(2): 253–258. https://doi.org/10.1038/mp.2012.184
View in Google Scholar DOI: https://doi.org/10.1038/mp.2012.184

Best A, Kamilar JM. 2018. The evolution of eccrine sweat glands in human and nonhuman primates. J Hum Evol 117: 33–43. https://doi.org/10.1016/j.jhevol.2017.12.003
View in Google Scholar DOI: https://doi.org/10.1016/j.jhevol.2017.12.003

Best A, Lieberman DE, Kamilar JM. 2019. Diversity and evolution of human eccrine sweat gland density. J Therm Biol. 84: 331–8. https://doi.org/10.1016/j.jtherbio.2019.07.024
View in Google Scholar DOI: https://doi.org/10.1016/j.jtherbio.2019.07.024

Bloemendaal M, Froböse MI, Wegman J, Zandbelt BB, van de Rest O, Cools R, Aarts E. 2018. Neuro-cognitive effects of acute tyrosine administration on reactive and proactive response inhibition in healthy older adults. eNeuro 30; 5(2): ENEURO.0035–17.2018. https://doi.org/10.1523/ENEURO.0035-17.2018
View in Google Scholar DOI: https://doi.org/10.1523/ENEURO.0035-17.2018

Bortz WM II. 1985. Physical exercise as an evolutionary force. J Hum Evol 14: 145–55. https://doi.org/10.1016/S0047-2484(85)80003-8
View in Google Scholar DOI: https://doi.org/10.1016/S0047-2484(85)80003-8

Bortz WM II, Angwin P, Mefford IN, Boarder MR, Noyce N, Barchas JD. 1981. Catecholamines, dopamine, and endorphin levels during extreme exercise. N Engl J Med 305(8): 466–7. https://doi.org/10.1016/S0047-2484(85)80003-8
View in Google Scholar DOI: https://doi.org/10.1056/NEJM198108203050822

Bougea A, Spantideas N, Katoulis A, Stefanis L. 2019. Levodopa-induced skin disorders in patients with Parkinson disease: a systematic literature review approach. Acta Neurol Belg 119(3): 325–36. https://doi.org/10.1007/s13760-019-01195-3
View in Google Scholar DOI: https://doi.org/10.1007/s13760-019-01195-3

Bramble DM, Lieberman DE. 2004. Endurance running and the evolution of Homo. Nature 432(7015): 345–52. https://doi.org/10.1038/nature03052
View in Google Scholar DOI: https://doi.org/10.1038/nature03052

Brodde OE. 1982. Vascular dopamine receptors: demonstration and characterization by in vitro studies. Life Sci 31(4): 289–306. https://doi.org/10.1016/0024-3205(82)90406-4
View in Google Scholar DOI: https://doi.org/10.1016/0024-3205(82)90406-4

Brown PL, Bae D, Kiyatkin EA. 2007. Relationships between locomotor activation and alterations in brain temperature during selective blockade and stimulation of dopamine transmission. Neuroscience 145(1): 335–43. https://doi.org/10.1016/j.neuroscience.2006.11.028
View in Google Scholar DOI: https://doi.org/10.1016/j.neuroscience.2006.11.028

Brozoski TJ, Brown RM, Rosvold HE, Goldman PS. 1979. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205(4409): 929–32. https://doi.org/10.1126/science.112679
View in Google Scholar DOI: https://doi.org/10.1126/science.112679

Carrier DR. 1984. The energetic paradox of human running and hominid evolution. Curr Anthropol 25: 483–95. https://doi.org/10.1086/203165
View in Google Scholar DOI: https://doi.org/10.1086/203165

Charkoudian N. 2003. Skin blood flow in adult human thermoregulation: how it works, when it does not, and why. Mayo Clin Proc 78(5): 603–12. https://doi.org/10.4065/78.5.603
View in Google Scholar DOI: https://doi.org/10.4065/78.5.603

Chaudhuri KR, Todorova A, Nirenberg MJ, Parry M, Martin A, Martinez-Martin P, Rizos A, Henriksen T, Jost W, Storch A, Ebersbach G, Reichmann H, Odin P, Antonini A. 2015. A pilot prospective, multicenter observational study of dopamine agonist withdrawal syndrome in Parkinson’s Disease. Mov Disord Clin Pract 2(2): 170–4. https://doi.org/10.1002/mdc3.12141
View in Google Scholar DOI: https://doi.org/10.1002/mdc3.12141

Cho SS, Strafella AP. 2009. rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex. PLoS One 4(8): e6725. https://doi.org/10.1371/journal.pone.0006725
View in Google Scholar DOI: https://doi.org/10.1371/journal.pone.0006725

Coon EA, Low PA. 2018. Thermoregulation in Parkinson disease. H Clin Neurol 157: 715–25. https://doi.org/10.1016/B978-0-444-64074-1.00043-4
View in Google Scholar DOI: https://doi.org/10.1016/B978-0-444-64074-1.00043-4

Cox B, Lee TF. 1980. Further evidence for a physiological role for hypothalamic dopamine in thermoregulation in the rat. J Physiol 300: 7–17. https://doi.org/10.1113/jphysiol.1980.sp013147
View in Google Scholar DOI: https://doi.org/10.1113/jphysiol.1980.sp013147

Clark G, Henneberg M. 2021. Cognitive and behavioral modernity in Homo erectus: skull globularity and hominin brain evolution. Anthropol Rev 84(4): 467–485. https://doi.org/10.2478/anre-2021-0030
View in Google Scholar DOI: https://doi.org/10.2478/anre-2021-0030

Crockett MJ. 2009. The neurochemistry of fairness: clarifying the link between serotonin and prosocial behavior. Ann N Y Acad Sci. 1167: 76–86. https://doi.org/10.1111/j.1749-6632.2009.04506.x
View in Google Scholar DOI: https://doi.org/10.1111/j.1749-6632.2009.04506.x

Cui CY, Childress V, Piao Y, Michel M, Johnson AA, Kunisada M, Ko MS, Kaestner KH, Marmorstein AD, Schlessinger D. 2012. Forkhead transcription factor FoxA1 regulates sweat secretion through Bestrophin 2 anion channel and Na-K-Cl cotransporter 1. Proc Natl Acad Sci USA. 109(4): 1199–203. https://doi.org/10.1073/pnas.1117213109
View in Google Scholar DOI: https://doi.org/10.1073/pnas.1117213109

Dávid-Barrett T, Dunbar RI. 2016. Bipedality and hair loss in human evolution revisited: the impact of altitude and activity scheduling. J Hum Evol 94: 72–82. https://doi.org/10.1016/j.jhevol.2016.02.006
View in Google Scholar DOI: https://doi.org/10.1016/j.jhevol.2016.02.006

Davies G, Marioni RE, Liewald DC, Hill WD, Hagenaars SP, Harris SE, Ritchie SJ, Luciano M, Fawns-Ritchie C, Lyall D, Cullen B, Cox SR, Hayward C, Porteous DJ, Evans J, McIntosh AM, Gallacher J, Craddock N, Pell JP, Smith DJ, Gale CR, Deary IJ. 2016. Genome-wide association study of cognitive functions and educational attainment in UK Biobank (N=112 151). Mol Psychiatry 21(6): 758–67. https://doi.org/10.1038/mp.2016.45
View in Google Scholar DOI: https://doi.org/10.1038/mp.2016.45

Daw ND, Kakade S, Dayan P. 2002. Opponent interactions between serotonin and dopamine. Neural Netw 15(4–6): 603–16. https://doi.org/10.1016/s0893-6080(02)00052-7
View in Google Scholar DOI: https://doi.org/10.1016/S0893-6080(02)00052-7

Dean MC, Cole TJ. 2013. Human life history evolution explains dissociation between the timing of tooth eruption and peak rates of root growth. PloS One 8(1): e54534. https://doi.org/10.1371/journal.pone.0054534
View in Google Scholar DOI: https://doi.org/10.1371/journal.pone.0054534

DeLouize AM, Coolidge FL, Wynn T. 2017. Dopaminergic systems expansion and the advent of Homo erectus. Quat Int 427(B): 245–52. https://doi.org/10.1016/j.quaint.2015.10.123
View in Google Scholar DOI: https://doi.org/10.1016/j.quaint.2015.10.123

D’Esposito M, Postle BR. 2015. The cognitive neuroscience of working memory. Annu Rev Psychol 66: 115–42. https://doi.org/10.1146/annurev-psych-010814-015031
View in Google Scholar DOI: https://doi.org/10.1146/annurev-psych-010814-015031

Desmond MA, Sobiecki JG, Jaworski M, Płudowski P, Antoniewicz J, Shirley MK, Eaton S, Książyk J, Cortina-Borja M, De Stavola B, Fewtrell M, Wells JCK. 2021. Growth, body composition, and cardiovascular and nutritional risk of 5- to 10-y-old children consuming vegetarian, vegan, or omnivore diets. Am J Clin Nutr 113(6): 1565–77. https://doi.org/10.1093/ajcn/nqaa445
View in Google Scholar DOI: https://doi.org/10.1093/ajcn/nqaa445

DeYoung CG, Cicchetti D, Rogosch FA, Gray JR, Eastman M, Grigorenko EL 2011. Sources of cognitive exploration: Genetic variation in the prefrontal dopamine system predicts openness/intellect. J Res Pers. 45(4): 364–371. https://doi.org/10.1016/j.jrp.2011.04.002
View in Google Scholar DOI: https://doi.org/10.1016/j.jrp.2011.04.002

Dhugga A, Henneberg M, Kumaratilake JS. 2014. Variation of human hairiness: a possible adaptation to solar radiation and melanin. Anthropol Rev 77(2): 219–32. https://doi.org/10.2478/anre-2014-0017
View in Google Scholar DOI: https://doi.org/10.2478/anre-2014-0017

Di Domenico D, Mapelli L. 2023. Dopaminergic modulation of prefrontal cortex inhibition. Biomedicines 11(5): 1276. https://doi.org/10.3390/biomedicines11051276
View in Google Scholar DOI: https://doi.org/10.3390/biomedicines11051276

Doll HM, Risgaard RD, Thurston H, Chen RJ, Sousa AM. 2024. Evolutionary innovations in the primate dopaminergic system. Curr Opin Genet Dev 88: 102236. https://doi.org/10.1016/j.gde.2024.102236
View in Google Scholar DOI: https://doi.org/10.1016/j.gde.2024.102236

Ferraro JV, Plummer TW, Pobiner BL, Oliver JS, Bishop LC, Braun DR, Ditchfield PW, Seaman JW 3rd, Binetti KM, Seaman JW Jr, Hertel F, Potts R. 2013. Earliest archaeological evidence of persistent hominin carnivory. PLoS One 8(4): e62174. https://doi.org/10.1371/journal.pone.0062174
View in Google Scholar DOI: https://doi.org/10.1371/journal.pone.0062174

Ferri AL, Lin W, Mavromatakis YE, Wang JC, Sasaki H, Whitsett JA, Ang SL. 2007. Foxa1 and Foxa2 regulate multiple phases of midbrain dopaminergic neuron development in a dosage-dependent manner. Development 134(15): 2761–9. https://doi.org/10.1242/dev.000141
View in Google Scholar DOI: https://doi.org/10.1242/dev.000141

Fuertinger S, Zinn JC, Sharan AD, Hamzei-Sichani F, Simonyan K. 2018. Dopamine drives left-hemispheric lateralization of neural networks during human speech. J Comp Neurol 526(5): 920–31. https://doi.org/10.1002/cne.24375
View in Google Scholar DOI: https://doi.org/10.1002/cne.24375

Garcia-Garcia M, Barceló F, Clemente IC, Escera C. 2010. The role of the dopamine transporter DAT1 genotype on the neural correlates of cognitive flexibility. Eur J Neurosci 31(4): 754–60. https://doi.org/10.1111/j.1460-9568.2010.07102.x
View in Google Scholar DOI: https://doi.org/10.1111/j.1460-9568.2010.07102.x

Goldman PS, Rosvold HE. 1972. The effects of selective caudate lesions in infant and juvenile Rhesus monkeys. Brain Res 43(1): 53–66. https://doi.org/10.1016/0006-8993(72)90274-0
View in Google Scholar DOI: https://doi.org/10.1016/0006-8993(72)90274-0

Grazioplene RG, G Ryman S, Gray JR, Rustichini A, Jung RE, DeYoung CG. 2015. Subcortical intelligence: caudate volume predicts IQ in healthy adults. Hum Brain Mapp 36(4): 1407–16. https://doi.org/10.1002/hbm.22710
View in Google Scholar DOI: https://doi.org/10.1002/hbm.22710

Hart G, Burton TJ, Balleine, BW 2024. What role does striatal dopamine play in goal-directed action? Neuroscience 546: 20–32. https://doi.org/10.1016/j.neuroscience.2024.03.020
View in Google Scholar DOI: https://doi.org/10.1016/j.neuroscience.2024.03.020

Hase A, Jung SE, aan het Rot M. 2015. Behavioral and cognitive effects of tyrosine intake in healthy human adults. Pharmacol Biochem Behav 133: 1–6. https://doi.org/10.1016/j.pbb.2015.03.008
View in Google Scholar DOI: https://doi.org/10.1016/j.pbb.2015.03.008

Henneberg M, Sarafis V. 1998. Human adaptations to meat eating. Hum Evol 13: 229–34. http://dx.doi.org/10.1007/bf02436507
View in Google Scholar DOI: https://doi.org/10.1007/BF02436507

Hirter KN, Miller EN, Stimpson CD, Phillips KA, Hopkins WD, Hof PR, Sherwood CC, Lovejoy CO, Raghanti MA. 2021. The nucleus accumbens and ventral pallidum exhibit greater dopaminergic innervation in humans compared to other primates. Brain Struct Funct 226(6): 1909–23. https://doi.org/10.1007/s00429-021-02300-0
View in Google Scholar DOI: https://doi.org/10.1007/s00429-021-02300-0

Hirschbeck A, Leao DS, Wagner E, Hasan A, Roeh A. 2022. Psychiatric medication and physical performance parameters – Are there implications for treatment? Front Psychiatry 13:985983. https://doi.org/10.3389/fpsyt.2022.985983
View in Google Scholar DOI: https://doi.org/10.3389/fpsyt.2022.985983

Hoberg EP, Alkire NL, de Queiroz A, Jones A. 2001. Out of Africa: origins of the Taenia tapeworms in humans. Proc Biol Sci 268(1469): 781–7. https://doi.org/10.1098/rspb.2000.1579
View in Google Scholar DOI: https://doi.org/10.1098/rspb.2000.1579

Horackova H, Karahoda R, Vachalova V, Turkova H, Abad C, Staud F. 2022. Functional characterization of dopamine and norepinephrine transport across the apical and basal plasma membranes of the human placental syncytiotrophoblast. Sci Rep 12(1): 11603. https://doi.org/10.1038/s41598-022-15790-7
View in Google Scholar DOI: https://doi.org/10.1038/s41598-022-15790-7

Ikemoto K, Kitahama K, Jouvet A, Arai R, Nishimura A, Nishi K, Nagatsu I. 1997. Demonstration of L-dopa decarboxylating neurons specific to human striatum. Neurosci Lett 29;232(2): 111–4. https://doi.org/10.1016/s0304-3940(97)00587-9
View in Google Scholar DOI: https://doi.org/10.1016/S0304-3940(97)00587-9

Jablonski NG. 2021. The evolution of human skin pigmentation involved the interactions of genetic, environmental, and cultural variables. Pigment Cell Melanoma Res 34(4): 707–29. https://doi.org/10.1111/pcmr.12976
View in Google Scholar DOI: https://doi.org/10.1111/pcmr.12976

Jaouen K, Beasley M, Schoeninger M, Hublin JJ, Richards MP. 2016. Zinc isotope ratios of bones and teeth as new dietary indicators: results from a modern food web (Koobi Fora, Kenya). Sci Rep 6: 26281. https://doi.org/10.1038/srep26281
View in Google Scholar DOI: https://doi.org/10.1038/srep26281

Jaouen K, Villalba-Mouco V, Smith GM, Trost M, Leichliter J, Lüdecke T, Méjean P, Mandrou S, Chmeleff J, Guiserix D, Bourgon N, Blasco F, Mendes Cardoso J, Duquenoy C, Moubtahij Z, Salazar Garcia DC, Richards M, Tütken T, Hublin JJ, Utrilla P, Montes L. 2022. A Neandertal dietary conundrum: insights provided by tooth enamel Zn isotopes from Gabasa, Spain. Proc Natl Acad Sci USA 119(43): e2109315119. https://doi.org/10.1073/pnas.2109315119
View in Google Scholar DOI: https://doi.org/10.1073/pnas.2109315119

Kamberov YG, Guhan SM, DeMarchis A, Jiang J, Wright SS, Morgan BA, Sabeti PC, Tabin CJ, Lieberman DE. 2018. Comparative evidence for the independent evolution of hair and sweat gland traits in primates. J Hum Evol 125: 99–105. https://doi.org/10.1016/j.jhevol.2018.10.008
View in Google Scholar DOI: https://doi.org/10.1016/j.jhevol.2018.10.008

Kaminski JA, Schlagenhauf F, Rapp M, Awasthi S, Ruggeri B, Deserno L, Banaschewski T, Bokde ALW, Bromberg U, Büchel C, Quinlan EB, Desrivières S, Flor H, Frouin V, Garavan H, Gowland P, Ittermann B, Martinot JL, Martinot MP, Nees F, Orfanos DP, Paus T, Poustka L, Smolka MN, Fröhner JH, Walter H, Whelan R, Ripke S, Schumann G, Heinz A; IMAGEN consortium. 2018. Epigenetic variance in dopamine D2 receptor: a marker of IQ malleability? Transl Psychiatry 8(1): 169. https://doi.org/10.1038/s41398-018-0222-7
View in Google Scholar DOI: https://doi.org/10.1038/s41398-018-0222-7

Khalaf K, Brook AH, Smith RN. 2022. Genetic, epigenetic and environmental factors influence the phenotype of tooth number, size and shape: anterior maxillary supernumeraries and the morphology of mandibular incisors. Genes (Basel) (12): 2232. https://doi.org/10.3390/genes13122232
View in Google Scholar DOI: https://doi.org/10.3390/genes13122232

Kling A, Tucker TJ. 1967. Effects of combined lesions of frontal granular cortex and caudate nucleus in the neonatal monkey. Brain Res 6(3): 428–39. https://doi.org/10.1016/0006-8993(67)90056-x
View in Google Scholar DOI: https://doi.org/10.1016/0006-8993(67)90056-X

Ko JH, Monchi O, Ptito A, Bloomfield P, Houle S, Strafella AP. 2008. Theta burst stimulation-induced inhibition of dorsolateral prefrontal cortex reveals hemispheric asymmetry in striatal dopamine release during a set-shifting task: a TMS-[(11) C]raclopride PET study. Eur J Neurosci 28(10): 2147–55. https://doi.org/10.1111/j.1460-9568.2008.06501.x
View in Google Scholar DOI: https://doi.org/10.1111/j.1460-9568.2008.06501.x

Kühn S, Düzel S, Colzato L, Norman K, Gallinat J, Brandmaier AM, Lindenberger U, Widaman KF. 2019. Food for thought: association between dietary tyrosine and cognitive performance in younger and older adults. Psychol Res. 83(6): 1097–1106. https://doi.org/10.1007/s00426-017-0957-4
View in Google Scholar DOI: https://doi.org/10.1007/s00426-017-0957-4

Langan EA, Lisztes E, Bíró T, Funk W, Kloepper JE, Griffiths CE, Paus R. 2013. Dopamine is a novel, direct inducer of catagen in human scalp hair follicles in vitro. Br J Dermatol. 168(3): 520–5. https://doi.org/10.1111/bjd.12113
View in Google Scholar DOI: https://doi.org/10.1111/bjd.12113

Larisch R, Meyer W, Klimke A, Kehren F, Vosberg H, Müller-Gärtner HW. 1998. Left-right asymmetry of striatal dopamine D2 receptors. Nucl Med Commun 19(8): 781–7. https://doi.org/10.1097/00006231-199808000-00009
View in Google Scholar DOI: https://doi.org/10.1097/00006231-199808000-00009

Larsen T, Fernandes R, Wang YV, Roberts P. 2022. Reconstructing hominin diets with stable isotope analysis of amino acids: new perspectives and future directions. Bioscience 72(7): 618–637. https://doi.org/10.1093/biosci/biac028
View in Google Scholar DOI: https://doi.org/10.1093/biosci/biac028

Leclercq M, Gimenes G, Maintenant C, Clerc J. 2023. Goal choice in preschoolers is influenced by context, cognitive flexibility, and metacognition. Front Psychol 13: 1063566. https://doi.org/10.3389/fpsyg.2022.1063566
View in Google Scholar DOI: https://doi.org/10.3389/fpsyg.2022.1063566

Lee TF, Mora F, Myers RD. 1985. Dopamine and thermoregulation: an evaluation with special reference to dopaminergic pathways. Neurosci Biobehav Rev 9(4): 589–98. https://doi.org/10.1016/0149-7634(85)90005-3
View in Google Scholar DOI: https://doi.org/10.1016/0149-7634(85)90005-3

Lee J, Ryu HJ, Hwang SY, Koh SB. 2024. Hair loss: a well-known yet understudied symptom in Parkinson’s Disease patients during dopaminergic therapy. J Mov Disord 17(1): 47–54. https://doi.org/10.14802/jmd.23088.
View in Google Scholar DOI: https://doi.org/10.14802/jmd.23088

Le Pen G, Sonnier L, Hartmann A, Bizot JC, Trovero F, Krebs MO, Prochiantz A. 2008. Progressive loss of dopaminergic neurons in the ventral midbrain of adult mice heterozygote for Engrailed1: a new genetic model for Parkinson’s disease? Parkinsonism Relat Disord 14()2: S107–11. https://doi.org/10.1016/j.parkreldis.2008.04.007
View in Google Scholar DOI: https://doi.org/10.1016/j.parkreldis.2008.04.007

Lhommée E, Batir A, Quesada JL, Ardouin C, Fraix V, Seigneuret E, Chabardès S, Benabid AL, Pollak P, Krack P. 2014. Dopamine and the biology of creativity: lessons from Parkinson’s disease. Front Neurol 5: 55. https://doi.org/10.3389/fneur.2014.00055
View in Google Scholar DOI: https://doi.org/10.3389/fneur.2014.00055

Lieberman DE. 2015. Human locomotion and heat loss: an evolutionary perspective. Compr Physiol 5(1): 99–117. https://doi.org/10.1002/cphy.c140011
View in Google Scholar DOI: https://doi.org/10.1002/j.2040-4603.2015.tb00602.x

Linares C, Martinez-Martin P, Rodríguez-Blázquez C, Forjaz MJ, Carmona R, Díaz J. 2016. Effect of heat waves on morbidity and mortality due to Parkinson’s disease in Madrid: A time-series analysis. Environ Int 89–90: 1–6. https://doi.org/10.1016/j.envint.2016.01.017
View in Google Scholar DOI: https://doi.org/10.1016/j.envint.2016.01.017

Luciana M, Collins PF, Depue, RA. 1998. Opposing roles for dopamine and serotonin in the modulation of human spatial working memory functions. Cereb Cortex 8(3): 218–26. https://doi.org/10.1093/cercor/8.3.218
View in Google Scholar DOI: https://doi.org/10.1093/cercor/8.3.218

Lucock MD. 2023. The evolution of human skin pigmentation: a changing medley of vitamins, genetic variability, and UV radiation during human expansion. Am J Biol Anthropol 180(2): 252–71. https://doi.org/10.1002/ajpa.24564
View in Google Scholar DOI: https://doi.org/10.1002/ajpa.24564

Ma S, Skarica M, Li Q, Xu C, Risgaard RD, Tebbenkamp ATN, Mato-Blanco X, Kovner R, Krsnik Ž, de Martin X, Luria V, Martí-Pérez X, Liang D, Karger A, Schmidt DK, Gomez-Sanchez Z, Qi C, Gobeske KT, Pochareddy S, Debnath A, Hottman CJ, Spurrier J, Teo L, Boghdadi AG, Homman-Ludiye J, Ely JJ, Daadi EW, Mi D, Daadi M, Marín O, Hof PR, Rasin MR, Bourne J, Sherwood CC, Santpere G, Girgenti MJ, Strittmatter SM, Sousa AMM, Sestan N. 2022. Molecular and cellular evolution of the primate dorsolateral prefrontal cortex. Science 377(6614): eabo7257. https://doi.org/10.1126/science.abo7257.
View in Google Scholar DOI: https://doi.org/10.1126/science.abo7257

Maranduca MA, Branisteanu D, Serban DN, Branisteanu DC, Stoleriu G, Manolache N, Serban IL. 2019. Synthesis and physiological implications of melanic pigments. Oncol Lett 17(5): 4183–7. https://doi.org/10.3892/ol.2019.10071
View in Google Scholar DOI: https://doi.org/10.3892/ol.2019.10071

Marques PR, Spencer RL, Burks TF, McDougal JN. 1984. Behavioral thermoregulation, core temperature, and motor activity: simultaneous quantitative assessment in rats after dopamine and prostaglandin E1. Behav Neurosci 98(5): 858–67. https://doi.org/10.1037//0735-7044.98.5.858
View in Google Scholar DOI: https://doi.org/10.1037//0735-7044.98.5.858

Matsuda W, Furuta T, Nakamura KC, Hioki H, Fujiyama F, Arai R, Kaneko T. 2009. Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J Neurosci 29(2): 444–53. https://doi.org/10.1523/JNEUROSCI.4029-08.2009
View in Google Scholar DOI: https://doi.org/10.1523/JNEUROSCI.4029-08.2009

Matzel LD, Sauce B. 2023. A multi-faceted role of dual-state dopamine signaling in working memory, attentional control, and intelligence. Front Behav Neurosci 17: 1060786. https://doi.org/10.3389/fnbeh.2023.1060786
View in Google Scholar DOI: https://doi.org/10.3389/fnbeh.2023.1060786

Mitchell JM, Weinstein D, Vega T, Kayser AS. 2018. Dopamine, time perception, and future time perspective. Psychopharmacology (Berl) 235(10): 2783–93. https://doi.org/10.1007/s00213-018-4971-z
View in Google Scholar DOI: https://doi.org/10.1007/s00213-018-4971-z

Montgomery AJ, McTavish SF, Cowen PJ, Grasby PM. 2003. Reduction of brain dopamine concentration with dietary tyrosine plus phenylalanine depletion: an [11C] raclopride PET study. Am J Psychiatry 160(10): 1887–9. https://doi.org/10.1176/appi.ajp.160.10.1887
View in Google Scholar DOI: https://doi.org/10.1176/appi.ajp.160.10.1887

Mosites E, Aol G, Otiang E, Bigogo G, Munyua P, Montgomery JM, Neuhouser ML, Palmer GH, Thumbi SM. 2017. Child height gain is associated with consumption of animal-source foods in livestock-owning households in Western Kenya. Public Health Nutr 20(2): 336–45. https://doi.org/10.1017/S136898001600210X
View in Google Scholar DOI: https://doi.org/10.1017/S136898001600210X

Newman EJ, Grosset DG, Kennedy PG. 2009. The parkinsonism-hyperpyrexia syndrome. Neurocrit Care 10(1): 136–40. https://doi.org/10.1007/s12028-008-9125-4.
View in Google Scholar DOI: https://doi.org/10.1007/s12028-008-9125-4

Nordströma U, Beauvais G, Ghosh A, Pulikkaparambil Sasidharan BC, Lundblad M, Fuchs J, Joshi RL, Lipton JW, Roholt A, Medicetty S, Feinstein TN, Steiner JA, Escobar Galvis ML, Prochiantz A, Brundin P. 2015. Progressive nigrostriatal terminal dysfunction and degeneration in the engrailed1 heterozygous mouse model of Parkinson’s disease. Neurobiol Dis 73: 70–82. https://doi.org/10.1016/j.nbd.2014.09.012
View in Google Scholar DOI: https://doi.org/10.1016/j.nbd.2014.09.012

Nouri N, Awatramani R. 2017. A novel floor plate boundary defined by adjacent En1 and Dbx1 microdomains distinguishes midbrain dopamine and hypothalamic neurons. Development 144(5): 916–27. https://doi.org/10.1242/dev.144949
View in Google Scholar DOI: https://doi.org/10.1242/dev.144949

Olvera-Cortés ME, Anguiano-Rodríguez P, López-Vázquez MA, Alfaro JM. 2008. Serotonin/dopamine interaction in learning. Prog Brain Res 172: 567–602. https://doi.org/10.1016/S0079-6123(08)00927-8
View in Google Scholar DOI: https://doi.org/10.1016/S0079-6123(08)00927-8

Palmiero M, Fusi G, Crepaldi M, Borsa VM, Rusconi ML. 2022. Divergent thinking and the core executive functions: a state-of-the-art review. Cogn Process 23(3): 341–366. https://doi.org/10.1007/s10339-022-01091-4
View in Google Scholar DOI: https://doi.org/10.1007/s10339-022-01091-4

Pietschnig J, Penke L, Wicherts JM, Zeiler M, Voracek M. 2015. Meta-analysis of associations between human brain volume and intelligence differences: how strong are they and what do they mean? Neurosci Biobehav Rev 57: 411–32. https://doi.org/10.1016/j.neubiorev.2015.09.017
View in Google Scholar DOI: https://doi.org/10.1016/j.neubiorev.2015.09.017

Pobiner BL. 2020. The zooarchaeology and paleoecology of early hominin scavenging. Evol Anthropol 29(2): 68–82. https://doi.org/10.1002/evan.2182
View in Google Scholar DOI: https://doi.org/10.1002/evan.21824

Previc FH. 1991. A general theory concerning the prenatal origins of cerebral lateralization in humans. Psychol Rev 98(3): 299–334. https://doi.org/10.1037/0033-295x.98.3.299
View in Google Scholar DOI: https://doi.org/10.1037//0033-295X.98.3.299

Previc FH. 1999. Dopamine and the origins of human intelligence. Brain Cogn 41(3): 299–350. https://doi.org/10.1006/brcg.1999.1129
View in Google Scholar DOI: https://doi.org/10.1006/brcg.1999.1129

Previc FH. 2009. The Dopaminergic Mind in Human Evolution and History. New York: Cambridge University Press.
View in Google Scholar DOI: https://doi.org/10.1017/CBO9780511581366

Quinn G. 2012. Normal genetic variation of the human foot: part 1: the paradox of normal anatomical alignment in an evolutionary epigenetic context. J Am Podiatr Med Assoc 102(1): 64–70. https://doi.org/10.7547/1020064
View in Google Scholar DOI: https://doi.org/10.7547/1020064

Raghanti MA, Edler MK, Stephenson AR, Wilson LJ, Hopkins WD, Ely JJ, Erwin JM, Jacobs B, Hof PR, Sherwood CC. 2016. Human-specific increase of dopaminergic innervation in a striatal region associated with speech and language: a comparative analysis of the primate basal ganglia. J Comp Neurol 524(10): 2117–29. https://doi.org/10.1002/cne.23937
View in Google Scholar DOI: https://doi.org/10.1002/cne.23937

Raghanti MA, Edler MK, Stephenson AR, Munger EL, Jacobs B, Hof PR, Sherwood CC, Holloway RL, Lovejoy CO. 2018. A neurochemical hypothesis for the origin of hominids. Proc Natl Acad Sci USA 115(6): E1108-E1116. https://doi.org/10.1073/pnas.1719666115
View in Google Scholar DOI: https://doi.org/10.1073/pnas.1719666115

Raghanti MA, Spocter MA, Stimpson CD, Erwin JM, Bonar CJ, Allman JM, Hof PR, Sherwood CC. 2009. Species-specific distributions of tyrosine hydroxylase-immunoreactive neurons in the prefrontal cortex of anthropoid primates. Neuroscience 158(4): 1551–9. https://doi.org/10.1016/j.neuroscience.2008.10.058
View in Google Scholar DOI: https://doi.org/10.1016/j.neuroscience.2008.10.058

Ranganath A, Jacob SN. 2016. Doping the mind: dopaminergic modulation of prefrontal cortical cognition. Neuroscientist 22(6): 593–603. https://doi.org/10.1177/1073858415602850
View in Google Scholar DOI: https://doi.org/10.1177/1073858415602850

Rusz J, Dusek P, Tykalova T, Novotny M, Illner V, Simek M, Kouba T, Kryze P, Zogala D, Ruzicka E, Sousa M, Jorge A, Nef T, Krack P. 2024. Is speech function lateralised in the basal ganglia? Evidence from de novo Parkinson’s disease. J Neurol Neurosurg Psychiatry jnnp-2024-334297. https://doi.org/10.1136/jnnp-2024-334297
View in Google Scholar DOI: https://doi.org/10.1136/jnnp-2024-334297

Ruxton GD, Wilkinson DM. 2011. Avoidance of overheating and selection for both hair loss and bipedality in hominins. Proc Natl Acad Sci USA 108(52): 20965–9. https://doi.org/10.1073/pnas.1113915108
View in Google Scholar DOI: https://doi.org/10.1073/pnas.1113915108

Saniotis A, Grantham JP, Kumaratilake JS, Henneberg M, Mohammadi K. 2021. Going beyond brain size: An evolutionary overview of serotonergic regulation in human higher cortical functions. Anthropologie 59(1): 101–6. https://doi.org/10.26720/anthro.20.08.1
View in Google Scholar DOI: https://doi.org/10.26720/anthro.20.08.10.1

Scott IM, Boulant JA. 1984. Dopamine effects on thermosensitive neurons in hypothalamic tissue slices. Brain Res 306(1–2): 157–163. https://doi.org/10.1016/0006-8993(84)90364-0
View in Google Scholar DOI: https://doi.org/10.1016/0006-8993(84)90364-0

Shibasaki M, Crandall CG. 2010. Mechanisms and controllers of eccrine sweating in humans. Front Biosci (Schol Ed) 2(2): 685–96. https://doi.org/10.2741/s94
View in Google Scholar DOI: https://doi.org/10.2741/s94

Simon HH, Thuret S, Alberi L. 2004. Midbrain dopaminergic neurons: control of their cell fate by the engrailed transcription factors. Cell Tissue Res 318(1): 53–61. https://doi.org/10.1007/s00441-004-0973-8
View in Google Scholar DOI: https://doi.org/10.1007/s00441-004-0973-8

Simonyan K, Herscovitch P, Horwitz B. 2013. Speech-induced striatal dopamine release is left lateralized and coupled to functional striatal circuits in healthy humans: a combined PET, fMRI and DTI study. Neuroimage 70: 21–32. https://doi.org/10.1016/j.neuroimage.2012.12.042
View in Google Scholar DOI: https://doi.org/10.1016/j.neuroimage.2012.12.042

Smith JW, Bello ML, Price FG. 2021. A case-series observation of sweat rate variability in endurance-trained athletes. Nutrients 13(6): 1807. https://doi.org/10.3390/nu13061807
View in Google Scholar DOI: https://doi.org/10.3390/nu13061807

Sniekers S, Stringer S, Watanabe K, Jansen PR, Coleman JRI, Krapohl E, Taskesen E, Hammerschlag AR, Okbay A, Zabaneh D, Amin N, Breen G, Cesarini D, Chabris CF, Iacono WG, Ikram MA, Johannesson M, Koellinger P, Lee JJ, Magnusson PKE, McGue M, Miller MB, Ollier WER, Payton A, Pendleton N, Plomin R, Rietveld CA, Tiemeier H, van Duijn CM, Posthuma D. 2017. Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. Nat Genet 49(10): 1558. https://doi.org/10.1038/ng1017-1558c. Erratum for: Nat Genet. 2017 49(7): 1107–1112. https://doi.org/10.1038/ng.3869
View in Google Scholar DOI: https://doi.org/10.1038/ng1017-1558c

Sousa AMM, Zhu Y, Raghanti MA, Kitchen RR, Onorati M, Tebbenkamp ATN, Stutz B, Meyer KA, Li M, Kawasawa YI, Liu F, Perez RG, Mele M, Carvalho T, Skarica M, Gulden FO, Pletikos M, Shibata A, Stephenson AR, Edler MK, Ely JJ, Elsworth JD, Horvath TL, Hof PR, Hyde TM, Kleinman JE, Weinberger DR, Reimers M, Lifton RP, Mane SM, Noonan JP, State MW, Lein ES, Knowles JA, Marques-Bonet T, Sherwood CC, Gerstein MB, Sestan N. 2017. Molecular and cellular reorganization of neural circuits in the human lineage. Science 358(6366): 1027–32. https://doi.org/10.1126/science.aan3456
View in Google Scholar DOI: https://doi.org/10.1126/science.aan3456

Stanley SM. 1995. Climatic forcing and the origin of the human genus. W: National Research Council (US) Panel on Effects of Past Global Change on Life. Washington, DC: National Academies Press, 233–43.
View in Google Scholar

Suzuki T. 1981. How great will the stature of Japanese eventually become? J Hum Ergol (Tokyo) 10(1): 13–24.
View in Google Scholar

Takeuchi H, Taki Y, Sekiguchi A, Nouchi R, Kotozaki Y, Nakagawa S, Miyauchi CM, Iizuka K, Yokoyama R, Shinada T, Yamamoto Y, Hanawa S, Araki T, Hashizume H. 2014. Creativity measured by divergent thinking is associated with two axes of autistic characteristics. Front Psychol 5: 921. https://doi.org/10.3389/fpsyg.2014.00921
View in Google Scholar DOI: https://doi.org/10.3389/fpsyg.2014.00921

Taki Y, Hashizume H, Sassa Y, Takeuchi H, Asano M, Asano K, Kotozaki Y, Nouchi R, Wu K, Fukuda H, Kawashima R. 2012. Correlation among body height, intelligence, and brain gray matter volume in healthy children. Neuroimage 59(2): 1023–7. https://doi.org/10.1016/j.neuroimage.2011.08.092
View in Google Scholar DOI: https://doi.org/10.1016/j.neuroimage.2011.08.092

Tam CS, Johnson WD, Rood J, Heaton AL, Greenway FL. 2020. Increased human growth hormone after oral consumption of an amino acid supplement: results of a randomized, placebo-controlled, double-blind, crossover study in healthy subjects. Am J Ther. 27(4): e333–e337. https://doi.org/10.1097/MJT.0000000000000893
View in Google Scholar DOI: https://doi.org/10.1097/MJT.0000000000000893

Taylor KM, Giersch GEW, Caldwell AR, Epstein Y, Charkoudian N. 2024. Relation of body surface area-to-mass ratio to risk of exertional heat stroke in healthy men and women. J Appl Physiol (1985). 136(3): 549–54. https://doi.org/10.1152/japplphysiol.00597.2023
View in Google Scholar DOI: https://doi.org/10.1152/japplphysiol.00597.2023

Tilkens MJ, Wall-Scheffler C, Weaver TD, Steudel-Numbers K. 2007. The effects of body proportions on thermoregulation: an experimental assessment of Allen’s rule. J Hum Evol 53(3): 286–91. https://doi.org/10.1016/j.jhevol.2007.04.005
View in Google Scholar DOI: https://doi.org/10.1016/j.jhevol.2007.04.005

Tong J, Hornykiewicz O, Kish SJ. 2006. Inverse relationship between brain noradrenaline level and dopamine loss in Parkinson disease: a possible neuroprotective role for noradrenaline. Arch Neurol 63(12): 1724-8. https://doi.org/10.1001/archneur.63.12.1724
View in Google Scholar DOI: https://doi.org/10.1001/archneur.63.12.1724

Tormoehlen LM, Rusyniak DE. 2018. Neuroleptic malignant syndrome and serotonin syndrome. Handb Clin Neurol 157: 663–75. https://doi.org/10.1016/B978-0-444-64074-1.00039-2
View in Google Scholar DOI: https://doi.org/10.1016/B978-0-444-64074-1.00039-2

Toups MA, Kitchen A, Light JE, Reed DL. 2011. Origin of clothing lice indicates early clothing use by anatomically modern humans in Africa. Mol Biol Evol 28(1): 29–32. https://doi.org/10.1093/molbev/msq234
View in Google Scholar DOI: https://doi.org/10.1093/molbev/msq234

Tyler J, Podaras M, Richardson B, Roeder N, Hammond N, Hamilton J, Blum K, Gold M, Baron DA, Thanos PK. 2023. High intensity interval training exercise increases dopamine D2 levels and modulates brain dopamine signaling. Front Public Health 11: 1257629. https://doi.org/10.3389/fpubh.2023.1257629
View in Google Scholar DOI: https://doi.org/10.3389/fpubh.2023.1257629

Wang L, Yin H, Di Y, Liu Y, Liu J. 2016. Human local and total heat losses in different temperature. Physiol Behav 157: 270–6. https://doi.org/10.1016/j.physbeh.2016.02.018
View in Google Scholar DOI: https://doi.org/10.1016/j.physbeh.2016.02.018

Weydt P, Dupuis L, Petersen Å. 2018. Thermoregulatory disorders in Huntington disease. Handb Clin Neurol 157: 761–75. https://doi.org/10.1016/B978-0-444-64074-1.00047-1
View in Google Scholar DOI: https://doi.org/10.1016/B978-0-444-64074-1.00047-1

Wheeler PE. 1985. The loss of functional body hair in man: the influence of thermal environment, body form and bipedality. J Hum Evol 14: 23–8. https://doi.org/10.1016/S0047-2484(85)80091-9
View in Google Scholar DOI: https://doi.org/10.1016/S0047-2484(85)80091-9

Will M, Pablos A, Stock JT. 2017. Long-term patterns of body mass and stature evolution within the hominin lineage. R Soc Open Sci 4(11): 171339. https://doi.org/10.1098/rsos.171339
View in Google Scholar DOI: https://doi.org/10.1098/rsos.171339

Yuan T, Ying J, Jin L, Li C, Gui S, Li Z, Wang R, Zuo Z, Zhang Y. 2020. The role of serum growth hormone and insulin-like growth factor-1 in adult humans brain morphology. Aging (Albany NY). 12(2): 1377–96. https://doi.org/10.18632/aging.102688. Erratum in: Aging (Albany NY). 2021 Sep 29;13(18): 22623–22624. https://doi.org/10.18632/aging.203601
View in Google Scholar DOI: https://doi.org/10.18632/aging.203601

Zabelina DL, Colzato L, Beeman M, Hommel B. 2016. Dopamine and the creative mind: individual differences in creativity are predicted by interactions between dopamine genes DAT and COMT. PLoS One 11(1): e0146768. https://doi.org/10.1371/journal.pone.0146768
View in Google Scholar DOI: https://doi.org/10.1371/journal.pone.0146768

Zheng X, Hasegawa H. 2016. Central dopaminergic neurotransmission plays an important role in thermoregulation and performance during endurance exercise. Eur J Sport Sci 16(7): 818–28. https://doi.org/10.1080/17461391.2015.1111938
View in Google Scholar DOI: https://doi.org/10.1080/17461391.2015.1111938

Zink KD, Lieberman DE. 2016. Impact of meat and Lower Palaeolithic food processing techniques on chewing in humans. Nature 531(7595): 500–3. https://doi.org/10.1038/nature16990
View in Google Scholar DOI: https://doi.org/10.1038/nature16990

Downloads

Published

22-12-2025

How to Cite

Previc, F. H. (2025). The Critical Role of Dopamine in the Evolution of Human Intelligence and Thermal Tolerance. Anthropological Review, 88(4), 31–51. https://doi.org/10.18778/1898-6773.88.4.02

Issue

Section

Articles