Sex estimation using measurements of the proximal femur in a historical population from Poland

Authors

DOI:

https://doi.org/10.18778/1898-6773.86.1.04

Keywords:

sex assessment, morphometrics, sexual dimorphism, discriminant function, the Polish population

Abstract

Sex estimation is one of the most important components in assessing the biological profile of an individual. In an archaeological context, the pelvis, which is the most dimorphic part of the skeleton, is often poorly preserved, which can cause an inability to use morphological sex estimation methods. Therefore, alternative methods are required in such cases. Because the utility of the metric methods based on the femur measurement has been confirmed, and the bone is usually available for examination due to its good preservation, developing methods using the landmarks of the femur could have important implications in sex estimation.  

This study aimed to derive a discriminant function equation for a Polish archaeological population based on measurements of the proximal end of the femur.  

The study sample included individuals from a medieval cemetery in Milicz (n = 62) and an early modern necropolis at Czysty Square in Wrocław, Poland (n = 162). The analysis included seven measurements collected from the right and left proximal femora. To estimate the reproducibility of the measurements, intra-and interobserver errors and reliability coefficients were calculated. Subsequently, univariate and stepwise discriminant analyses were performed, and the sex sectioning points and equations were proposed.  

No differences were observed between measurements of the right and left femora. The results indicated a high utility and reproducibility of the FHD measurement (regardless whether left or right femur was measured). The discriminant equations for sex estimation reached an accuracy of 83.0–92.3%, which implies the utility of the function on Polish historical populations when the other methods for sex estimation cannot be used. 

Downloads

Download data is not yet available.

References

Albanese J. 2013. A method for estimating sex using the clavicle, humerus, radius, and ulna. J Forensic Sci 58(6):1414–1419. https://doi.org/10.1111/1556-4029.12188
View in Google Scholar DOI: https://doi.org/10.1111/1556-4029.12188

Albanese J, Eklics G, Tuck A. 2008. A Metric Method for Sex Determination Using the Proximal Femur and Fragmentary Hipbone. J Forensic Sci 53(6):1283–1288. https://doi.org/10.1111/j.1556-4029.2008.00855.x
View in Google Scholar DOI: https://doi.org/10.1111/j.1556-4029.2008.00855.x

Anastopoulou I, Eliopoulos C, Valakos ED, Manolis SK. 2014. Application of Pur­kait’s triangle method on a skeletal pop­ulation from southern Europe. Forensic Sci Int 245:203.e1–203.e4. https://doi.org/10.1016/j.forsciint.2014.10.005
View in Google Scholar DOI: https://doi.org/10.1016/j.forsciint.2014.10.005

Auerbach BM, Ruff CB. 2006. Limb bone bilat­eral asymmetry: variability and common­ality among modern humans. J Hum Evol 50:203–218. https://doi.org/10.1016/j.jhe­vol.2005.09.004
View in Google Scholar DOI: https://doi.org/10.1016/j.jhevol.2005.09.004

Bartholdy BP, Sandoval E, Hoogland ML, Schrader SA. 2020. Getting rid of di­chotomous sex estimations: Why logistic regression should be preferred over discriminant function analysis. J. Fo­rensic Sci 65(5):1685–1691. https://doi.org/10.1111/1556-4029.14482
View in Google Scholar DOI: https://doi.org/10.1111/1556-4029.14482

Bidmos MA, Adebesin AA, Mazengenya P, Olateju OI, Adegboye O. 2021. Estimation of sex from metatarsals using discrimi­nant function and logistic regression anal­yses. Aust J Forensic Sci 53(5):543–556.
View in Google Scholar DOI: https://doi.org/10.1080/00450618.2019.1711180

Bidmos MA, Mazengenya P. 2021. Accuracies of discriminant function equations for sex es­timation using long bones of upper extremi­ties. Int J Legal Med 135(3):1095–1102.
View in Google Scholar DOI: https://doi.org/10.1007/s00414-020-02458-y

Brickley M. 2004. Determination of sex from archaeological skeletal material and as­sessment of Partutition. In: Brickley M, McKinley JI, editors. Guidelines to the standards for recording human remains. IFA paper. UK: Southampton and Read­ing, 7:22–25.
View in Google Scholar

Brůžek J. 2002. A method for visual determi­nation of sex, using the human hip bone. Am J Phys Anthropol 117(2):157–168.
View in Google Scholar DOI: https://doi.org/10.1002/ajpa.10012

Buikstra JE, Ubelaker DH. 1994. Standards for data collection from human skeletal remains. Arkansas Archeological Survey: Fayetteville.
View in Google Scholar

Byers SN. 2016. Introduction to forensic an­thropology. Routledge
View in Google Scholar DOI: https://doi.org/10.4324/9781315642031

Case DT, Ross AH. 2007. Sex determination from hand and foot bone lengths. J. Fo­rensic Sci 52(2):264–270. https://doi.org/10.1111/j.1556-4029.2006.00365.x
View in Google Scholar DOI: https://doi.org/10.1111/j.1556-4029.2006.00365.x

Christensen MA, Passalacqua VN, Bartelink JE. 2015. Forensic anthropology current methods and practice. Elsevier.
View in Google Scholar DOI: https://doi.org/10.1016/B978-0-12-418671-2.00005-7

Colman KL, Janssen MCL, Stull KE, Van Rijn RR, Oostra RJ, Boer HH, Van Der Mer­we AE. 2018. Dutch population specific sex estimation formulae using the prox­imal femur. Forensic Sci Int 286:268.e1- 268.e8. https://doi.org/10.1016/j.forsci­int.2017.12.029
View in Google Scholar DOI: https://doi.org/10.1016/j.forsciint.2017.12.029

Dimichele DL, Spradley MK. 2012. Sex esti­mation in a modern American osteologi­cal sample using a discriminant function analysis from the calcaneus. Forensic Sci Int 221(1–3):152.e1-152.e5. https://doi.org/10.1016/j.forsciint.2012.03.026
View in Google Scholar DOI: https://doi.org/10.1016/j.forsciint.2012.03.026

Djorojević M, Roldán C, Botella M, Alemán I. 2019. Sex assessment from the proxi­mal femur in a Spanish population based on three-dimensional computed tomog­raphy metric analysis. Vojnosanit Pregl 76(12):1245–1252.
View in Google Scholar DOI: https://doi.org/10.2298/VSP170920031D

Djorojević M, Roldán C, Botella M, Alemán I. 2015. Estimation of Purkait’s triangle method and alternative models for sex assessment from the proximal femur in the Spanish population. Int J Legal Med 130(1):245–251. https://doi.org/10.1007/s00414-015-1201-7
View in Google Scholar DOI: https://doi.org/10.1007/s00414-015-1201-7

Inskip S, Scheib CL, Wohns AW, Ge X, Ki­visild T, Robb J. 2019. Evaluating mac­roscopic sex estimation methods using genetically sexed archaeological material: The medieval skeletal collection from St John’s Divinity School, Cambridge. Am J Phys Anthropol 168(2):340–351. https://doi.org/10.1002/ajpa.23753
View in Google Scholar DOI: https://doi.org/10.1002/ajpa.23753

İşcan MY. 2005. Forensic anthropology of sex and body size. Forensic Sci Int 147(2–3):107–112. https://doi.org/10.1016/j.forsciint.2004.09.069
View in Google Scholar DOI: https://doi.org/10.1016/j.forsciint.2004.09.069

Jerković I, Bašić Ž, Kružić I, Anđelinović Š. 2016. Sex determination from femora in late antique sample from Eastern Adri­atic coast (Salona necropolis). Anthropol Rev 79(1):59–67. https://doi.org/10.1515/anre-2016-0005
View in Google Scholar DOI: https://doi.org/10.1515/anre-2016-0005

Kazzazi SM, Kranioti EF. 2018. Sex estima­tion using cervical dental measurements in an archaeological population from Iran. Archaeol Anthropol Sci 10(2):439–448. https://doi.org/10.1007/s12520-016-0363-7
View in Google Scholar DOI: https://doi.org/10.1007/s12520-016-0363-7

Kiarszysz G, Kolenda J. 2017. Wczes­nośredniowieczne Grodziska w Krajo­brazie Doliny Baryczy. Przyczynek do Studiów nad Przemianami Osadniczymi. Śląskie Sprawozdania Archeologiczne 59:93–126. https://doi.org/10.23734/ssa.2017.59.93.126
View in Google Scholar

Kim D, Kwak D, Han S. 2013. Sex deter­mination using discriminant analysis of the medial and lateral condyles of the fe­mur in Koreans. Forensic Sci Int 233(1–3):121–125. https://doi.org/10.1016/j.forsciint.2013.08.028
View in Google Scholar DOI: https://doi.org/10.1016/j.forsciint.2013.08.028

Klales AR, Ousley SD, Vollner JM. 2012. A Revised Method of Sexing the Human Innominate Using Phenice’ s Nonmetric Traits and Statistical Methods. Am J Phys Anthropol 149(1):104–14. https://doi.org/10.1002/ajpa.22102
View in Google Scholar DOI: https://doi.org/10.1002/ajpa.22102

Krishan K, Chatterjee PM, Kanchan T, Kaur S, Baryah N, Singh RK. 2016. A review of sex estimation techniques during ex­amination of skeletal remains in forensic anthropology casework. Forensic Sci Int 261,165-e1.
View in Google Scholar DOI: https://doi.org/10.1016/j.forsciint.2016.02.007

Kubicka AM, Piontek J. 2016. Sex estima­tion from measurements of the first rib in a contemporary Polish population. Int J Legal Med 130(1):265–272. https://doi.org/10.1007/s00414-015-1247-6
View in Google Scholar DOI: https://doi.org/10.1007/s00414-015-1247-6

Łubocka Z, Gronkiewicz S. 2015. Analiza zmian patologicznych i wybranych czyn­ników stresów oraz izotopów stabilnych w materiale osteologicznym z wczesno­nowożytnego cmentarza Salwatora we Wrocławiu Aneks. Wratislavia Antiqua 21:143–162.
View in Google Scholar

Macaluso PJ. 2010. The efficacy of ster­nal measurements for sex estimation in South African blacks. Forensic Sci Int 202(1–3):111. https://doi.org/10.1016/j.forsciint.2010.07.019
View in Google Scholar DOI: https://doi.org/10.1016/j.forsciint.2010.07.019

Macaluso PJ, Rico A, Santos M, Lucena J. 2012. Osteometric sex discrimination from the sternal extremity of the fourth rib in a recent forensic sample from Southwestern Spain. Forensic Sci Int 223(1–3). https://doi.org/10.1016/j.forsci­int.2012.09.007
View in Google Scholar DOI: https://doi.org/10.1016/j.forsciint.2012.09.007

Mall G, Graw M, Gehring KD, Hubig M. 2000. Determination of sex from femora. Forensic Sci Int 113(1–3):315–321. https://doi.org/10.1016/S0379-0738(00)00240-1
View in Google Scholar DOI: https://doi.org/10.1016/S0379-0738(00)00240-1

Phenice TW. 1969. A newly developed visual method of sexing the os pubis. Am J Phys Anthropol 30(2):297–301. https://doi.org/10.1002/ajpa.1330300214
View in Google Scholar DOI: https://doi.org/10.1002/ajpa.1330300214

Plochocki JH. 2004. Bilateral Variation in limb articular surface dimensions. Am J Hum Biol 16:328–333. https://doi.org/10.1002/ajhb.20023
View in Google Scholar DOI: https://doi.org/10.1002/ajhb.20023

Purkait R. 2005. Triangle identified at the prox­imal end of femur: a new sex determinant. Forensic Sci Int 147(2–3):135–139. https://doi.org/10.1016/j.forsciint.2004.08.005
View in Google Scholar DOI: https://doi.org/10.1016/j.forsciint.2004.08.005

Ricklan DE, Tobias PV. 1986. Unusually low sexual dimorphism of endocrani­al capacity in a Zulu cranial series. Am J Phys Anthropol 71:285–293. https://doi.org/10.1002/ajpa.1330710304
View in Google Scholar DOI: https://doi.org/10.1002/ajpa.1330710304

Sawicki J. 2015. Kultura materialna w świetle znalezisk z grobów na cmentarzu Salwa­tora we Wrocławiu. Wratislavia Antiqua 21:59–137.
View in Google Scholar

Šlaus M, Strinovic D, Skavic J, Petrovecki V. 2003. Discriminant function sexing of fragmentary and complete femora: stand­ards for contemporary Croatia. J. Forensic Sci 48(3):509–512.
View in Google Scholar DOI: https://doi.org/10.1520/JFS2002159

Tomaszewska IM, Frączek P, Gomulska M, Pliczko M, Śliwińska A, Sałapa K, Chrzan R, Kowalski P, Nowakowski M, Walocha JA. 2014. Sex determination based on the analysis of a contemporary Polish population’s palatine bones: a computed tomography study of 1,200 patients. Fo­lia morphol 73(4):462–468. https://doi.org/10.5603/FM.2014.0069
View in Google Scholar DOI: https://doi.org/10.5603/FM.2014.0069

Tomczyk J, Nieczuja-Dwojacka J, Zalewska M, Niemiro W, Olczyk W. 2017. Sex es­timation of upper long bones by selected measurements in a Radom (Poland) pop­ulation from the 18th and 19th centu­ries AD. Anthropol Rev 80(3):287–300. https://doi.org/10.1515/anre-2017-0019
View in Google Scholar DOI: https://doi.org/10.1515/anre-2017-0019

Torimitsu S, Makino Y, Saitoh H, Sakuma A, Ishii N, Yajima D, Inokuchi G, Motomura A, Chiba F, Yamaguchi R, Hashimoto M, Hoshioka Y, Iwase H. 2016. Sex estima­tion based on scapula analysis in a Jap­anese population using multidetector computed tomography. Forensic Sci Int 262(285):285.e1–285.e5. https://doi.org/10.1016/j.forsciint.2016.02.023
View in Google Scholar DOI: https://doi.org/10.1016/j.forsciint.2016.02.023

Ubelaker DH, DeGaglia CM. 2017. Popu­lation variation in skeletal sexual di­morphism. Forensic Sci Int 278:407. e1–407.e7. https://doi.org/10.1016/j.for­sciint.2017.06.012
View in Google Scholar DOI: https://doi.org/10.1016/j.forsciint.2017.06.012

Ulijaszek SJ, Kerr DA. 1999. Anthropomet­ric measurement error and the assess­ment of nutritional status. Br J Nutr 82(3):165–177. https://doi.org/10.1017/s0007114599001348
View in Google Scholar DOI: https://doi.org/10.1017/S0007114599001348

Wachowski K. 1969. Wczesnośredniowieczne cmentarzysko szkieletowe w Miliczu. Sile­sia Antiqua 11:199–223.
View in Google Scholar

Wachowski K. 1970. Wczesnośredniowieczne cmentarzysko szkieletowe w Miliczu cz. II. Silesia Antiqua 12:123–195.
View in Google Scholar

Walker PL. 2005. Greater sciatic notch mor­phology: sex, age, and population differenc­es. Am J Phys Anthropol 127(4):385–391.
View in Google Scholar DOI: https://doi.org/10.1002/ajpa.10422

Wojtucki D. 2015. Cmentarz i kościół Sal­watora we Wrocławiu w świetle źródeł pisanych. Wratislavia Antiqua 21:11–18.
View in Google Scholar

Downloads

Published

2023-03-28

How to Cite

Wysocka, J., Cieślik, A. I., & Danel, D. P. (2023). Sex estimation using measurements of the proximal femur in a historical population from Poland. Anthropological Review, 86(1), 37–49. https://doi.org/10.18778/1898-6773.86.1.04

Issue

Section

Articles