Aspekty przestrzenne budowy modeli wielopoziomowych
DOI:
https://doi.org/10.18778/0208-6018.292.05Abstrakt
Modele wielopoziomowe (hierarchiczne) wykorzystywane są w celu analizy danych, dla których możliwe jest uzyskanie kilku poziomów agregacji. W najprostszych przypadkach sposób zorganizowania kolejnych poziomów można przedstawić w postaci struktury hierarchicznej lub stosując agregację poprzeczną danych. Sposób budowy modeli wielopoziomowych sprawia, że mogą one być również wykorzystywane na gruncie analiz przestrzennych. Celem artykułu jest zaprezentowanie możliwości zastosowania modeli wielopoziomowych w analizach procesów przestrzennych. W pracy omówiono dotychczasowe techniki implementacji modeli wielopoziomowych w analizach struktur przestrzennych. Dodatkowo, zaprezentowano możliwości rozszerzenia tradycyjnych modeli wielopoziomowych w kierunku uwzględnienia interakcji przestrzennych.
Pobrania
Bibliografia
Abreu M., De Groot H.L.F., Florax R.J.G.M., (2005), Space and growth: a survey of empirical evidence and methods, (in:) Region et Development, No. 21.
Google Scholar
DOI: https://doi.org/10.2139/ssrn.631007
Anselin L. (1988), Spatial Econometrics: Methods and Models, Springer, Vol. 4.
Google Scholar
DOI: https://doi.org/10.1007/978-94-015-7799-1
Anselin L., (2003), Spatial Externalities, Spatial Multipliers, And Spatial Econometrics (in:) International Regional Science Review, Vol. 26(2).
Google Scholar
DOI: https://doi.org/10.1177/0160017602250972
Arbia G., Battisti M., Di Vaio G., (2010), Institutions and geography: Empirical test of spatial growth models for European regions, (in:) Economic Modelling, Vol. 27.
Google Scholar
DOI: https://doi.org/10.1016/j.econmod.2009.07.004
Armstrong Ft., (1995), Convergence among regions of the European Union, 1950-1990, (in:) Papers in Regional Science, Vol. 74.
Google Scholar
DOI: https://doi.org/10.1111/j.1435-5597.1995.tb00633.x
Blume L. E., Brock W. A., Durlauf, S. N., Ioannides, Y. M., (2011), Identification of social interactions, Handbook of Social Economics, North-Holland.
Google Scholar
DOI: https://doi.org/10.2139/ssrn.1660002
Braumolle Y., Djebbari H., Fortin B., (2009), Identification of peer effects through social networks, (in:) Journal of Econometrics, No. 150.
Google Scholar
DOI: https://doi.org/10.1016/j.jeconom.2008.12.021
Brock W.A., Durlauf S.N., (2001), Interaction-based Models, NBER Technical Working Papers 0258.
Google Scholar
DOI: https://doi.org/10.3386/t0258
Capello R., Nijkamp P., (2009), Handbook of Regional Growth and Development Theories, Edward Elgar Publishing Limited.
Google Scholar
DOI: https://doi.org/10.4337/9781848445987
Chasco C., Le Galio J., (2012), Hierarchy and spatial autocorrelation effects in hedonic models, (in:) Economics Bulletin, Vol. 32.2.
Google Scholar
Cohen-Cole E., (2006), Multiple groups identification in the linear-in-means model, (in:) Economics Letters, Vol. 92(2).
Google Scholar
DOI: https://doi.org/10.1016/j.econlet.2006.01.035
Corrado L., Distante R., (2012), Eating Behavior and Social Interactions from Adolescence to Adulthood, Discussion Papers Department of Economics University of Copenhagen.
Google Scholar
DOI: https://doi.org/10.2139/ssrn.2098920
Corrado L., Fingleton B., (2012), Where is the economics in spatial econometrics?, (in:) Journal of Regional Science, Vol. 52(2).
Google Scholar
DOI: https://doi.org/10.1111/j.1467-9787.2011.00726.x
Ferron J., (1997), Moving Between Hierarchical Modeling Notations, (in:) Journal of educational and behavioral statistics, Vol. 22.
Google Scholar
DOI: https://doi.org/10.2307/1165241
Goldstein H. (1999) Multilevel Statistical Models, Wiley.
Google Scholar
Grab J., (2009), Econometric analysis in poverty research: with case studies from developing countries, Peter Lang.
Google Scholar
Graham B., Hahn J., (2005), Identification and estimation of the linear-in-means model of social interactions, (in:) Economics Letters, Vol. 88.
Google Scholar
DOI: https://doi.org/10.1016/j.econlet.2005.02.001
Griffith, D. A., (1992), A Spatially Adjusted N-Way ANOVA Model, (in:) Regional Science and Urban Economics, Vol. 22.
Google Scholar
DOI: https://doi.org/10.1016/0166-0462(92)90034-X
Hays J.C., Kachi A., Franzese R.J., (2009), A spatial model incorporating dynamic, endogenous network interdependence: A political science application, (in:) Statistical Methodology, Vol. 7 (3).
Google Scholar
DOI: https://doi.org/10.1016/j.stamet.2009.11.005
Ioannides Y.M., Topa G., (2010), Neighborhood effects: accomplishments and looking beyond them, (in:) Journal of Regional Science, Vol. 50, No. 1.
Google Scholar
DOI: https://doi.org/10.1111/j.1467-9787.2009.00638.x
Lee L., (2007), Identification and Estimation of Spatial Econometric Models with Group Interactions, Contextual Factors and Fixed Effects, (in:) Journal of Econometrics, Vol. 140.2.
Google Scholar
DOI: https://doi.org/10.1016/j.jeconom.2006.07.001
Manski Ch., (1993), Identification of Endogenous Social Effects: The Reflection Problem, (in:) The Review of Economic Studies, Vol. 60, No. 3.
Google Scholar
DOI: https://doi.org/10.2307/2298123
Moffitt R., (2001), Policy Interventions, Low-Level Equilibra, and Social Interactions, (in:) Durlauf S., Young H. (Eds.), Social dynamics, MIT Press, Cambridge.
Google Scholar
DOI: https://doi.org/10.7551/mitpress/6294.003.0005
Snijders T.A.B., Bosker R.J., (2011), Multilevel analysis: An introduction to basic and advanced multilevel modelling, Sage Publications Limited.
Google Scholar
Steenbergen M., Jones B., (2002), Modeling Multilevel Data Structures, (in:) American Journal of Political Science, Vol. 46, No. 1.
Google Scholar
DOI: https://doi.org/10.2307/3088424
Zeilstra A.S., (2008), Regional labour markets in a cross-country perspective, PPI Publishers,available: http://irs.ub.rug.n1/ppn/314552685
Google Scholar





