Etyczne, prawne i społeczno-ekonomiczne aspekty wdrażania sztucznej inteligencji w administracji podatkowej
DOI:
https://doi.org/10.18778/0208-6069.110.12Słowa kluczowe:
zarządzanie sztuczną inteligencją, godna zaufania sztuczna inteligencja, akt o sztucznej inteligencji, tendencyjności uprzedzeń, przejrzystość algorytmicznaAbstrakt
Niniejsze opracowanie dotyczy zastosowania sztucznej inteligencji (AI) w administracji podatkowej, przez pryzmat zagadnień etycznych, prawnych i społeczno-ekonomicznych. Analiza sugeruje, że choć AI może usprawnić pobór podatków i wspierać innowacyjność, to jednocześnie rodzi obawy związane z kwestiami takimi jak rzetelność, przejrzystość i rozliczalność działań. Szczególne ryzyko wynika między innymi z obecności błędów w danych treningowych, zagrożeń dla prywatności i nadmiernego polegania na automatycznych systemach punktacji ryzyka, co podkreśla znaczenie koherentnych regulacji prawnych, w tym RODO i Aktu o Sztucznej Inteligencji. Społeczno-ekonomiczne skutki AI – zwłaszcza potencjalne wypieranie miejsc pracy oraz wzrost nierówności dochodowych – wskazują na potrzebę odpowiedzialnych regulacji i polityk publicznych. W niniejszym opracowaniu, w oparciu o ramy Etycznych, Prawnych i Społecznych Aspektów (ELSA) oraz Odpowiedzialnych Badań i Innowacji (RRI), proponuje się rekomendacje łączące zaangażowanie interesariuszy, transparentność oraz stały nadzór. Ostatecznie, jedynie połączenie innowacyjności technologicznej z zasadami prawnymi i etycznymi gwarantuje, że zastosowanie AI w operacji administracji podatkowej będzie służyć dobru społecznemu zgodnie z zasadami godnej zaufania sztucznej inteligencji.
Pobrania
Bibliografia
Acemoglu, Daron. Sara Johnson. 2023. Power and Progress: Our Thousand-Year Struggle over Technology and Prosperity. London: Hachette UK.
Google Scholar
Alon-Barkat, Sigal. Madalina Busuioc. 2023. “Human–AI Interactions in Public Sector Decision Making: ‘Automation Bias’ and ‘Selective Adherence’ to Algorithmic Advice.” Journal of Public Administration Research and Theory 33(1): 153–169. https://doi.org/10.1093/jopart/muac007
Google Scholar
DOI: https://doi.org/10.1093/jopart/muac007
Bevacqua, John. Vanessa Renolds. 2018. “The Digital Divide and Taxpayer Rights – Cautionary Findings from the United States.” eJournal of Tax Research 16: 714–739.
Google Scholar
Blank, Joshua D. Leigh Osofsky. 2021. “The Social Justice of Legal Drafting: Tax Law and Beyond.” In 114th Annual Conference on Taxation. Washington, DC: National Tax Association.
Google Scholar
Brownsword, Roger. 2024. “Law, Technology, and Our Governance Dilemma.” Laws 13(3): 30. https://doi.org/10.3390/laws13030030
Google Scholar
DOI: https://doi.org/10.3390/laws13030030
Citron, Danielle Keats. 2008. “Open Code Governance.” University of Chicago Legal Forum 2008: 355–387.
Google Scholar
CNIL (Commission Nationale de l’Informatique et des Libertés). 2022. AI: Ensuring GDPR Compliance. September 21, 2022. https://www.cnil.fr/en/ai-ensuring-gdprcompliance
Google Scholar
Cumberland, Torsten. 2024. “A Look at the Risks and Opportunities for AI in Tax Administrations.” OECD AI Policy Observatory. https://oecd.ai/en/wonk/risks-and-opportunities-ai-tax-administrations
Google Scholar
de la Feria, Rita. M.A. Grau Ruiz. 2021. “The Robotisation of Tax Administration.” In International Conference on Inclusive Robotics for a Better Society. Edited by M.A. Grau Ruiz. 115–123. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-04305-5_19
Google Scholar
DOI: https://doi.org/10.1007/978-3-031-04305-5_19
Engstrom, David Freeman. Daniel E. Ho. Catherine M. Sharkey. Mariano-Florentino Cuéllar. 2020. “Government by Algorithm: Artificial Intelligence in Federal Administrative Agencies.” NYU School of Law. Public Law Research Paper No. 20–54. https://doi.org/10.2139/ssrn.3551505
Google Scholar
DOI: https://doi.org/10.2139/ssrn.3551505
European Commission. 2018a. Artificial Intelligence for Europe. COM(2018) 237 final. Brussels: European Commission. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2018%3A237%3AFIN
Google Scholar
European Commission. 2018b. “Commission Appoints Expert Group on AI and Launches the Euro-pean AI Alliance.” Digital Strategy. https://digital-strategy.ec.europa.eu/en/news/commission-appoints-expert-group-ai-and-launches-european-ai-alliance
Google Scholar
European Commission. 2018c. Coordinated Plan on Artificial Intelligence. COM(2018) 795 final. Brussels: European Commission. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2018%3A795%3AFIN
Google Scholar
European Court of Human Rights (Grand Chamber). n.d. L.B. v. Hungary, Application No. 36345/16. https://hudoc.echr.coe.int/eng?i=001-212208
Google Scholar
European Union. 2016. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the Protection of Natural Persons with Regard to the Processing of Personal Data and on the Free Movement of Such Data (General Data Protection Regulation). Official Journal L119/1. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679
Google Scholar
Hadwick, David. 2022. “Behind the One-Way Mirror: Reviewing the Legality of EU Tax Algorithmic Governance.” EC Tax Review 31(4): 184–201. https://doi.org/10.54648/ECTA2022019
Google Scholar
DOI: https://doi.org/10.54648/ECTA2022019
Hadwick, David. 2024. “Slipping Through the Cracks: The Carve-outs for AI Tax Enforcement Systems in the EU AI Act.” European Papers 9(3): 936–955.
Google Scholar
Hadwick, David. Shujing Lan. 2021. “Lessons to Be Learned from the Dutch Childcare Allowance Scandal: A Comparative Review of Algorithmic Governance by Tax Administrations in the Netherlands, France and Germany.” World Tax Journal 13(4): 609–645. https://doi.org/10.59403/27410pa
Google Scholar
DOI: https://doi.org/10.59403/27410pa
Internal Revenue Service (IRS). 2024. IRS Communication on Data Disclosure. March 10, 2024. https://www.irs.gov/newsroom/irs-communication-on-data-disclosure
Google Scholar
Keen, Michael. Joel Slemrod. 2017. “Optimal Tax Administration.” Journal of Public Economics 152: 133–142. https://doi.org/10.1016/j.jpubeco.2017.04.006
Google Scholar
DOI: https://doi.org/10.1016/j.jpubeco.2017.04.006
Khogali, H.O.S. Mekid. 2023. “The Blended Future of Automation and AI: Examining Some Long-term Societal and Ethical Impact Features.” Technology in Society 73: 102–232. https://doi.org/10.1016/j.techsoc.2023.102232
Google Scholar
DOI: https://doi.org/10.1016/j.techsoc.2023.102232
Kleinberg, Jon. Himabindu Lakkaraju. Jure Leskovec. Jens Ludwig. Sendhil Mullainathan. 2018. “Human Decisions and Machine Predictions.” The Quarterly Journal of Economics 133(1): 237–293. https://doi.org/10.3386/w23180
Google Scholar
DOI: https://doi.org/10.1093/qje/qjx032
Kuźniacki, Błażej. Mariana Almada. Krzysztof Tyliński. Łukasz Górski. Barbara Winogradska. Rik Zeldenrust. 2022. “Towards eXplainable Artificial Intelligence (XAI) in Tax Law: The Need for a Minimum Legal Standard.” World Tax Journal 14: 573–616. https://doi.org/10.59403/2yhh9pa
Google Scholar
DOI: https://doi.org/10.59403/2yhh9pa
Maat, E.P. 2022. “Google v. CNIL: A Commentary on the Territorial Scope of the Right to Be Forgotten.” European Review of Private Law 30(2): 241–252. https://doi.org/10.54648/ERPL2022013
Google Scholar
DOI: https://doi.org/10.54648/ERPL2022013
Mayson, Sandra G. 2018. “Bias In, Bias Out.” Yale Law Journal 128: 2218–2230.
Google Scholar
McCarty, L. Thorne. 1977. “Reflections on ‘Taxman’: An Experiment in Artificial Intelligence and Legal Reasoning.” Harvard Law Review 90: 837–893. https://doi.org/10.2307/1340132
Google Scholar
DOI: https://doi.org/10.2307/1340132
MIT Future Tech. 2024a. The AI Risk Repository: A Comprehensive Meta-Review, Database, and Taxonomy of Risks from Artificial Intelligence. https://airisk.mit.edu/
Google Scholar
MIT Future Tech. 2024b. AI Risk Repository. https://airisk.mit.edu/
Google Scholar
OECD (Organisation for Economic Co-operation and Development). 2020. Forum on Tax Administration: Tax Administration 3.0 – The Digital Transformation of Tax Administration. https://www.oecd.org/tax/forum-on-tax-administration/publications-and-products/tax-administration-3-0-the-digital-transformation-of-tax-administration.pdf
Google Scholar
Okunogbe, Omowunmi. Victor Pouliquen. 2022. “Technology, Taxation, and Corruption: Evidence from the Introduction of Electronic Tax Filing.” American Economic Journal: Economic Policy 14(1): 341–372. https://doi.org/10.1257/pol.20200123
Google Scholar
DOI: https://doi.org/10.1257/pol.20200123
Passi, Samir. Maria Vorvoreanu. 2022. Overreliance on AI Literature Review. Microsoft Research. https://www.microsoft.com/en-us/research/uploads/prod/2022/06/Aether-Overreliance-on-AI-Review-Final-6.21.22.pdf
Google Scholar
Peeters, Brigitte. 2024. “European Law Restrictions on Tax Authorities’ Use of Artificial Intelligence Systems: Reflections on Some Recent Developments.” EC Tax Review 33(2). https://doi.org/10.54648/ECTA2024006
Google Scholar
DOI: https://doi.org/10.54648/ECTA2024006
Ranchordás, Sofia. 2022. “Connected but Still Excluded? Digital Exclusion Beyond Internet Access.” In The Cambridge Handbook of Life Sciences, Information Technology and Human Rights. Edited by Marcello Ienca, Oreste Pollicino, Laura Liguori, Portolano Cavallo, Elisa Stefanini, Roberto Andorno. 244–258. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781108775038.020
Google Scholar
DOI: https://doi.org/10.1017/9781108775038.020
Ranchordas, Sofia. Luisa Scarcella. 2021. “Automated Government for Vulnerable Citizens: Intermediating Rights.” William & Mary Bill of Rights Journal 30: 373–408. https://doi.org/10.2139/ssrn.3938032
Google Scholar
DOI: https://doi.org/10.2139/ssrn.3938032
Renda, Andrea. 2024. Towards a European Large-Scale Initiative on Artificial Intelligence. Brussels: Centre for European Policy Studies (CEPS). CEPS Deep Dive. https://www.ceps.eu/ceps-publications/towards-a-european-large-scale-initiative-on-artificial-intelligence/
Google Scholar
Renda, Andrea. Pierre-Alexandre Balland. 2023. Forge Ahead or Fall Behind: Why We Need a United Europe of Artificial Intelligence. CEPS Explainer. https://cdn.ceps.eu/wp-content/uploads/2023/11/CEPS-Explainer-2023-13_United-Europe-of-Artificial-Intelligence.pdf
Google Scholar
Rizzo, Alessandro. Gauri Hassan. 2024. AI Risk Management in Tax Audits: A Comparative Review of the EU and US Regulatory Approaches. Unpublished manuscript.
Google Scholar
Rodrik, Dani. Stefanie Stantcheva. 2021. “Fixing Capitalism’s Good Jobs Problem.” Oxford Review of Economic Policy 37(4): 824–837. https://doi.org/10.1093/oxrep/grab024
Google Scholar
DOI: https://doi.org/10.1093/oxrep/grab024
Scarcella, Luisa. 2019. “Tax Compliance and Privacy Rights in Profiling and Automated Decision Making.” Internet Policy Review 8(4). https://doi.org/10.14763/2019.4.1441
Google Scholar
DOI: https://doi.org/10.14763/2019.4.1422
Sunstein, Cass R. 2021. “Governing by Algorithm? No Noise and (Potentially) Less Bias.” Duke Law Journal 71: 1175–1213. https://doi.org/10.2139/ssrn.3925240
Google Scholar
DOI: https://doi.org/10.2139/ssrn.3925240
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.
Funding data
-
Narodowym Centrum Nauki
Grant numbers No. 2021/41/B/HS5/00225



