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1. Introduction

The assessment of investment risk is mostly based on the analysis of changes ob-
served in prices or returns on financial assets. In the classical approach, the vol-
atility of those changes is defined in terms of deviations from expected levels. 
Nevertheless, the characteristics of time series observed in real financial markets 
clearly reject the use of symmetric measures. There are many factors determining 
volatility. According to the basic classification, there are two groups of factors: sys-
tematic and specific. The first group is represented by changes observed in the ma-
jority of macroeconomic indicators (i.e. GDP, inflation, political policy, etc.). It is 
not possible to reduce such a kind of volatility by efforts of individuals. The other 
group is determined by factors directly related to the undertaken investment. These 
factors are called typical or specific. Each investor, if a proper investment strate-
gy is used, is able to reduce their influence on the final result of investment. 

Prices and returns volatility is not detached from behavioural attitudes of in-
vestors. Volatility represents a general mood observed in the market which affects 
the level of prices and returns. Each investor reacts subjectively and it is usually 
difficult to predict his or her behaviour. All these factors together cause the final 
result of the investment to be uncertain and possibly different from the expected 
one. In other words, the investment becomes risky. Of course, the difference be-
tween the real and expected future value of investment might be understood am-
biguously. The most popular approach to risk defining is to look at this problem 
in its neutral or negative meaning. The neutral approach indicates that the final 
value of investment is different from the investor’s expectations, whereas the neg-
ative aspect always assumes the loss of undertaken investment.

To describe properly the volatility of the studied phenomena, it is necessary 
to choose a suitable statistical model. The applied model depends on the type 
of volatility. If financial markets are of interest, two types of volatility can be dis-
tinguished: historical and implied volatility. The first type is associated with the 
identification of volatility observed in prices or returns on the basis of historical 
data. In turn, the implied volatility is associated with the activity of the investor 
in the area of derivatives, especially options (the implied volatility is calculated 
on the basis of prices for options issued for a specified underlying asset) (Parasur-
aman, Ramudu, 2011: 112–120).

As it can be seen, models describing volatility depend mainly on how vol-
atility is defined. The analysis based only on variance (as a volatility measure) 
is insufficient. Taking into account the specific characteristics of time series in fi-
nancial markets, the most popular models describing volatility belong to the class 
of GARCH models. 
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2. Models for conditional volatility:  
GARCH and APARCH

The autoregressive heteroscedasticity model of order q (ARCH(q)) was proposed 
as a theoretical tool for volatility modelling by Engle in 1982 (Engle, 1982: 987–
1007). Due to the need of determining high orders of lags in the ARCH mod-
el (and hence a large number of unknown parameters to be estimated), in 1986 
Bollerslev (1986: 307–327) proposed its generalisation called the GARCH model. 
Mathematically, any GARCH(p, q) model can be described using the following 
equations1:

	

 

 

 𝑟𝑟𝑡𝑡 − 𝜇𝜇 = 𝑎𝑎𝑡𝑡 = 𝜎𝜎𝑡𝑡𝜀𝜀𝑡𝑡,  (1) 

 

 𝜎𝜎𝑡𝑡2 = 𝛼𝛼0 + ∑ 𝛼𝛼𝑖𝑖𝑎𝑎𝑡𝑡−𝑖𝑖2𝑞𝑞
𝑖𝑖=1 + ∑ 𝛽𝛽𝑗𝑗𝜎𝜎𝑡𝑡−𝑗𝑗2 ,𝑝𝑝

𝑗𝑗=1   (2) 

 

where α0 ≥ 0, αi ≥ 0 for i > 0, βj ≥ 0, ∑ (𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖) < 1𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝,𝑞𝑞)
𝑖𝑖=1 . The error term satisfies the 

assumptions of εtN(0, 1) and of iid. 

The class of GARCH models is comprehensively described in the literature. They have 

many interesting properties, i.e. the ability of modelling the heavy-tailed distribution. The main 

disadvantage is that they do not describe asymmetry in the data (the impact of positive and 

negative information), and do not describe the leverage effect or the long-memory effect. 

To solve such problems, Ding et al. (1993: 83–106) proposed a new class of models 

describing the above-mentioned stylised facts of financial time series. This class of models is 

called APARCH (Asymmetric Power ARCH). It is a wide group of theoretical tools allowing 

conditional volatility modelling. The mathematical formula is an extension of (2) and takes the 

following form (Karanasos, Kim, 2006: 116): 

 

𝜎𝜎𝑡𝑡𝛿𝛿 = 𝛼𝛼0 + ∑ 𝛼𝛼𝑖𝑖(|𝑎𝑎𝑡𝑡−𝑖𝑖| − 𝛾𝛾𝑖𝑖𝑎𝑎𝑡𝑡−𝑖𝑖)𝛿𝛿𝑞𝑞
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𝑗𝑗=1  (3) 

 

where α0 ≥ 0, αi ≥ 0 for i > 0, βj ≥ 0, ∑ (𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖) < 1𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝,𝑞𝑞)
𝑖𝑖=1 .  

The error term has to satisfy the assumptions of εtN(0, 1) and of iid. Moreover, in the 

specification (3) additional parameters δ and γi appear. The parameter δ plays the role of a Box-

Cox transformation of the conditional standard deviation σt, while the parameter γi reflects the 

leverage effect. A positive (negative) value of the parameter γi means that past negative 

(positive) shocks have a deeper impact on the current conditional volatility. 

Taking into account the class of APARCH(p, q) models, it is worth mentioning some 

detailed types, dependent on parameters (Karanasos, Kim, 2006: 118):  

1) for δ = 2, γi = 0, βi = 0 – ARCH(q), 

2) for δ = 2, γi = 0 – GARCH(p, q), 

3) for δ = 1, γi = 0 – TS – GARCH(p, q), 

4) for δ = 2 – GJR – GARCH(p, q), 

5) for δ = 1 – T – GARCH(p, q), 

	 (1)
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The error term has to satisfy the assumptions of εtN(0, 1) and of iid. Moreover, in the 

specification (3) additional parameters δ and γi appear. The parameter δ plays the role of a Box-

Cox transformation of the conditional standard deviation σt, while the parameter γi reflects the 

leverage effect. A positive (negative) value of the parameter γi means that past negative 

(positive) shocks have a deeper impact on the current conditional volatility. 

Taking into account the class of APARCH(p, q) models, it is worth mentioning some 

detailed types, dependent on parameters (Karanasos, Kim, 2006: 118):  

1) for δ = 2, γi = 0, βi = 0 – ARCH(q), 

2) for δ = 2, γi = 0 – GARCH(p, q), 

3) for δ = 1, γi = 0 – TS – GARCH(p, q), 

4) for δ = 2 – GJR – GARCH(p, q), 

5) for δ = 1 – T – GARCH(p, q), 

	 (3)

where α0 ≥ 0, αi ≥ 0 for i > 0, βj ≥ 0, . 
The error term has to satisfy the assumptions of εtN(0, 1) and of iid. Moreo-

ver, in the specification (3) additional parameters δ and γi appear. The parameter 
δ plays the role of a Box‑Cox transformation of the conditional standard deviation 
σt, while the parameter γi reflects the leverage effect. A positive (negative) value 
of the parameter γi means that past negative (positive) shocks have a deeper im-
pact on the current conditional volatility.

1 The equation system usually contains a conditional mean model.
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Taking into account the class of APARCH(p, q) models, it is worth mentioning 
some detailed types, dependent on parameters (Karanasos, Kim, 2006: 118): 
1)	 for δ = 2, γi = 0, βi = 0 – ARCH(q),
2)	 for δ = 2, γi = 0 – GARCH(p, q),
3)	 for δ = 1, γi = 0 – TS – GARCH(p, q),
4)	 for δ = 2 – GJR – GARCH(p, q),
5)	 for δ = 1 – T – GARCH(p, q),
6)	 for γi = 0, βi = 0 – N – ARCH(q),
7)	 for δ → ∞ – log – ARCH(q).

As we can see, ARCH and GARCH models are special cases of APARCH. 
The estimation of unknown parameters is usually conducted using the maximum 
likelihood method.

Of course, we can point out many other statistical tools used effectively to de-
scribe the volatility observed in financial time series (Stochastic Volatility Models, 
Local/Stochastic Volatility Models, etc.). As this paper presents the results of our 
initial research in applying volatility models to the data from the precious metals 
market, we decided to use only the ARCH‑based approach.

3. Conditional error distributions and model fit

While parameters of APARCH model are estimated, an important issue is to cor-
rectly determine the conditional distribution of error term εt. In terms of classi-
cal models, this class assumes that the distribution of εt is Gaussian (standard). 
In practice, however (due to the characteristics of processes which describe mod-
els of conditional variance), other types of distributions are used, especially those 
allowing for asymmetry, leptokurtosis or outliers. These conditional distributions 
of residuals can be described by the following density functions:
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7) for δ → ∞ – log – ARCH(q). 
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ARCH-based approach. 
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 𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝜀𝜀𝑡𝑡, 𝜎𝜎𝑡𝑡2; 𝜃𝜃) =
1

𝜎𝜎𝑡𝑡√2𝜋𝜋
𝑒𝑒𝑒𝑒𝑒𝑒 {−𝜀𝜀𝑡𝑡

2

2𝜎𝜎𝑡𝑡2
}, (4) 

 

 𝑓𝑓𝑡𝑡−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝜀𝜀𝑡𝑡, 𝜎𝜎𝑡𝑡2; 𝜃𝜃) =
𝛤𝛤(𝑣𝑣+12 )

𝜎𝜎𝑡𝑡𝛤𝛤(
𝑣𝑣
2)√𝜋𝜋(𝑣𝑣−2)

(1 + 𝜀𝜀𝑡𝑡2
(𝑣𝑣−2)𝜎𝜎𝑡𝑡2

)
𝑣𝑣+1
2 , (5) 
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𝑣𝑣
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𝛤𝛤(3𝑣𝑣−1)2

−2
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𝑣𝑣
||

𝑣𝑣
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, (6) 

 

where {εt} is the sequence of iid random variables, 𝜎𝜎𝑡𝑡2 is the conditional variance, θ is the vector 

of estimated parameters, ν is the number of degrees of freedom and 𝛤𝛤(𝑘𝑘) = ∫ 𝑥𝑥𝑘𝑘−1𝑒𝑒−1𝑑𝑑𝑑𝑑+∞
0  is the 

gamma function with the parameter k. The parameter ν has to be estimated if the t-Student 

distribution and GED distribution are used.  
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where {εt} is the sequence of iid random variables, is the conditional variance, θ 
is the vector of estimated parameters, ν is the number of degrees of freedom and 
is the gamma function with the parameter k. The parameter ν has to be estimated 
if the t‑Student distribution and GED distribution are used. 

These types of conditional distributions are commonly used in practice. 
However, it is also possible to include certain modifications in classical distri-
butions to fit them properly to the data. Looking at the fact that empirical dis-
tributions of returns are characterised by a significant level of asymmetry, it is 
possible to modify the symmetric distribution to take into account the asymme-
try observed in the data (Piontek, 2005: 300).

Let g(x) be the probability density function of random variable X and let it be 
defined by the functions k1(ς) and k2(ς). Any skewed distribution fς(x) is described 
by the formula:
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Where Ix is the indicator function. If fς(x) defines the skewed probability distribution, the functions 

kI and kII usually have the form: 
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𝑘𝑘1(𝜍𝜍) = 𝜍𝜍
𝑘𝑘2(𝜍𝜍) =
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or 
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ς  (0, 1), the final distribution is skewed to the left, whereas for ς  (1, +∞), the distribution is 

skewed to the right respectively. For the function kII, the parameter ς  (–1, 1). For ς  (–1, 0), 
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Any symmetric distribution is obtained if ς = 1 (for kI) and if ς = 0 (for kII). 

The assessment of fitting GARCH-type model to the data is usually based on the information 
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criteria are calculated using the formulas below: 
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where LLF(θ) is the log‑likelihood function of the parameters vector θ, k is the 
number of estimated parameters, and n is the number of observations. The lower 
the values of information criteria, the better the model.

4. Value‑at‑Risk and backtesting of VaR

Value‑at‑Risk (VaR) is one of the most popular measures of risk and is defined 
as a representation of a potential loss of investment which can occur within some 
time interval with an arbitrarily determined tolerance level. The general formula 
defining VaR is as follows (Piontek, 2002: 477):
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The disadvantage of VaR is that as a risk measure it is not coherent. VaR does not satisfy the 

property of subadditivity which assumes that if a portfolio investment is of interest, the overall 

risk of the portfolio is not higher than the sum of individual risks. This property is satisfied by ES 

and MS.  

The accuracy of VaR models is assessed using the backtesting procedure. To evaluate the 

effectiveness of estimating VaR, one of the most popular approaches assumes that the series of 

failures is used in the form presented below (Ganczarek, 2007: 315–320): 

 

 [𝐼𝐼𝑡𝑡+1(𝛼𝛼)]𝑡𝑡=1𝑡𝑡=𝑇𝑇 = {1, 𝑟𝑟𝑡𝑡 ≤ −𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼
0, 𝑟𝑟𝑡𝑡 > −𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼 (17) 

 

The popular statistical tool used in practice is the Proportion of Failures Test (POF2) proposed 

by Kupiec (1995: 73–84): 

 

𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃 = −2𝑙𝑙𝑙𝑙 { (1−𝛼𝛼)𝑇𝑇−𝑁𝑁𝛼𝛼𝑁𝑁

[(1−𝑁𝑁
𝑇𝑇)

𝑇𝑇−𝑁𝑁
](𝑁𝑁𝑇𝑇)

𝑁𝑁}, (18) 

 

where N is the number of observations exceeding VaR for the series of length T. 

 

5. Precious metals market 

This paper presents an alternative approach to the classical financial investments (mainly 

related to the stock exchange), namely investments in precious metals. This type of assets is 

one of the oldest financial instruments, but their ability to multiply invested capital is not fully 

exploited in practice. From the historical perspective, precious metals represent wealth of 

individuals. Investors that hold this kind of assets are psychologically perceived as more 

credible or more stable, especially under the conditions of growing market uncertainty. One of 

the most interesting properties of precious metals is their low correlation with most asset classes 

and their resistance to unpredicted events which may generate extreme risk. They can therefore 

be treated as an effective and reliable tool for risk management, especially in terms of portfolio 

                                                           
2 Under the null hypothesis, the LRPOF test has χ2 distribution with 1 degree of freedom. 

	 (16)

The disadvantage of VaR is that as a risk measure it is not coherent. VaR does 
not satisfy the property of subadditivity which assumes that if a portfolio invest-
ment is of interest, the overall risk of the portfolio is not higher than the sum of in-
dividual risks. This property is satisfied by ES and MS. 

The accuracy of VaR models is assessed using the backtesting procedure. 
To evaluate the effectiveness of estimating VaR, one of the most popular approach-
es assumes that the series of failures is used in the form presented below (Gancza-
rek, 2007: 315–320):

	

 

𝑀𝑀𝑀𝑀𝛼𝛼(𝑋𝑋) = 𝑀𝑀𝑀𝑀[𝑟𝑟𝑡𝑡 − 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼(𝑋𝑋)|𝑟𝑟𝑡𝑡 > 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼(𝑋𝑋)] (16) 

 

The disadvantage of VaR is that as a risk measure it is not coherent. VaR does not satisfy the 

property of subadditivity which assumes that if a portfolio investment is of interest, the overall 

risk of the portfolio is not higher than the sum of individual risks. This property is satisfied by ES 

and MS.  

The accuracy of VaR models is assessed using the backtesting procedure. To evaluate the 

effectiveness of estimating VaR, one of the most popular approaches assumes that the series of 

failures is used in the form presented below (Ganczarek, 2007: 315–320): 

 

 [𝐼𝐼𝑡𝑡+1(𝛼𝛼)]𝑡𝑡=1𝑡𝑡=𝑇𝑇 = {1, 𝑟𝑟𝑡𝑡 ≤ −𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼
0, 𝑟𝑟𝑡𝑡 > −𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼 (17) 

 

The popular statistical tool used in practice is the Proportion of Failures Test (POF2) proposed 

by Kupiec (1995: 73–84): 

 

𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃 = −2𝑙𝑙𝑙𝑙 { (1−𝛼𝛼)𝑇𝑇−𝑁𝑁𝛼𝛼𝑁𝑁

[(1−𝑁𝑁
𝑇𝑇)

𝑇𝑇−𝑁𝑁
](𝑁𝑁𝑇𝑇)

𝑁𝑁}, (18) 

 

where N is the number of observations exceeding VaR for the series of length T. 

 

5. Precious metals market 

This paper presents an alternative approach to the classical financial investments (mainly 

related to the stock exchange), namely investments in precious metals. This type of assets is 

one of the oldest financial instruments, but their ability to multiply invested capital is not fully 

exploited in practice. From the historical perspective, precious metals represent wealth of 

individuals. Investors that hold this kind of assets are psychologically perceived as more 

credible or more stable, especially under the conditions of growing market uncertainty. One of 

the most interesting properties of precious metals is their low correlation with most asset classes 

and their resistance to unpredicted events which may generate extreme risk. They can therefore 

be treated as an effective and reliable tool for risk management, especially in terms of portfolio 

                                                           
2 Under the null hypothesis, the LRPOF test has χ2 distribution with 1 degree of freedom. 

	 (17)

The popular statistical tool used in practice is the Proportion of Failures Test 
(POF2) proposed by Kupiec (1995: 73–84):

	

 

𝑀𝑀𝑀𝑀𝛼𝛼(𝑋𝑋) = 𝑀𝑀𝑀𝑀[𝑟𝑟𝑡𝑡 − 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼(𝑋𝑋)|𝑟𝑟𝑡𝑡 > 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼(𝑋𝑋)] (16) 

 

The disadvantage of VaR is that as a risk measure it is not coherent. VaR does not satisfy the 

property of subadditivity which assumes that if a portfolio investment is of interest, the overall 

risk of the portfolio is not higher than the sum of individual risks. This property is satisfied by ES 

and MS.  

The accuracy of VaR models is assessed using the backtesting procedure. To evaluate the 

effectiveness of estimating VaR, one of the most popular approaches assumes that the series of 

failures is used in the form presented below (Ganczarek, 2007: 315–320): 

 

 [𝐼𝐼𝑡𝑡+1(𝛼𝛼)]𝑡𝑡=1𝑡𝑡=𝑇𝑇 = {1, 𝑟𝑟𝑡𝑡 ≤ −𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼
0, 𝑟𝑟𝑡𝑡 > −𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼 (17) 

 

The popular statistical tool used in practice is the Proportion of Failures Test (POF2) proposed 

by Kupiec (1995: 73–84): 

 

𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃 = −2𝑙𝑙𝑙𝑙 { (1−𝛼𝛼)𝑇𝑇−𝑁𝑁𝛼𝛼𝑁𝑁

[(1−𝑁𝑁
𝑇𝑇)

𝑇𝑇−𝑁𝑁
](𝑁𝑁𝑇𝑇)

𝑁𝑁}, (18) 

 

where N is the number of observations exceeding VaR for the series of length T. 

 

5. Precious metals market 

This paper presents an alternative approach to the classical financial investments (mainly 

related to the stock exchange), namely investments in precious metals. This type of assets is 

one of the oldest financial instruments, but their ability to multiply invested capital is not fully 

exploited in practice. From the historical perspective, precious metals represent wealth of 

individuals. Investors that hold this kind of assets are psychologically perceived as more 

credible or more stable, especially under the conditions of growing market uncertainty. One of 

the most interesting properties of precious metals is their low correlation with most asset classes 

and their resistance to unpredicted events which may generate extreme risk. They can therefore 

be treated as an effective and reliable tool for risk management, especially in terms of portfolio 

                                                           
2 Under the null hypothesis, the LRPOF test has χ2 distribution with 1 degree of freedom. 

	 (18)

where N is the number of observations exceeding VaR for the series of length T.

5. Precious metals market

This paper presents an alternative approach to the classical financial investments 
(mainly related to the stock exchange), namely investments in precious metals. This 
type of assets is one of the oldest financial instruments, but their ability to multi-
ply invested capital is not fully exploited in practice. From the historical perspec-
tive, precious metals represent wealth of individuals. Investors that hold this kind 
of assets are psychologically perceived as more credible or more stable, especially 
under the conditions of growing market uncertainty. One of the most interesting 
properties of precious metals is their low correlation with most asset classes and 
their resistance to unpredicted events which may generate extreme risk. They can 
therefore be treated as an effective and reliable tool for risk management, especially 
in terms of portfolio hedging. By adding precious metals to a diversified portfolio, 
its efficiency can increase, whereby the portfolio risk is lowered, while the port-
folio return remains the same or increases (if compared to a diversified portfolio 
without a precious metals allocation) (Batten et al., 2010: 65–71).

2 Under the null hypothesis, the LRPOF test has χ2 distribution with 1 degree of freedom.
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In general, metal prices are relevant not only for manufacturers and end‑us-
ers, but also for the economy as a whole. Therefore, their prices/returns volatility 
has to be examined and well assessed. Taking into account the economic situa-
tion of recent years, the importance of precious metals has increased significant-
ly. They provide effective hedging of undertaken investments, especially in times 
of destabilisation of the economy or a crisis. Precious metals are resistant to chang-
es observed in the market. Over the past four years, the demand for precious met-
als has been considerably weakened as a result of the improving capital market 
situation. 

When analysing portfolio investments, precious metals are an important part 
of well‑balanced portfolios. They can effectively protect against a high level of vol-
atility and risk observed in the market. Nowadays, we can point out many alter-
native investment opportunities in the field of precious metals. We can mention 
direct investments related to the physical purchase of metals, but also indirect 
investments, in the form of futures contracts, capital market operations, as well 
as investment funds, Exchange Traded Funds or structured products. Neverthe-
less, regardless of the choice of form of investment in the investment process, the 
level and rate of price volatility (and return as well) should be taken into account. 
It is also worth mentioning the fundamental factors of the price level of precious 
metals: demand and supply. The main sources of supply are mines, the recovery 
of precious metal scrap, commercial banks, and central banks. In addition, the 
world’s economic and geopolitical situation, interest rates, central bank policies 
and the exchange rates associated with them are very significant for precious met-
al prices (Charles et al., 2015: 284–291).

Recently, investors have many opportunities to invest their money in precious 
metals. As mentioned before, one of the most popular investment forms is the in-
direct one. Its main advantage is higher liquidity and security, and the reduction 
of high volatility resulting mainly from speculative activities.

6. Empirical analysis

The empirical example presents the practical application of APARCH‑type mod-
els in volatility modelling. The analysed data are the log‑return of four precious 
metals: GOLD, SILVER, PLATINUM, and PALLADIUM. The returns are cal-
culated using daily spot closing prices of these metals quoted on the LME within 
the period January 2010 – December 2015. The verified models are nested AR-
MA(1,1)‑GARCH(1,1) and ARMA(1,1)‑APARCH(1,1) for different conditional er-
ror distributions: normal, student and GED. The quality of models was assessed us-
ing information criteria of AIC, BIC, and HQC. The backtesting procedure of VaR 
was conducted for VaR at the confidence level 0.95 and 0.99. First, the time series 
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of returns and squared returns for selected metals is presented in Figure 1 (exam-
ples for SILVER and PLATINUM). 

Figure 1. Time series of return (left) and squared return (right) for SILVER (top) 
and PLATINUM (bottom)

Source: own calculations

As we can see in Figure 1, there are periods characterised by a higher level 
of volatility. It is easy to show clustering in variance as well. The descriptive sta-
tistics for each asset are shown in Table 1.

Table 1. Descriptive statistics

Metal Mean Min Max Variance Skewness Kurtosis
GOLD –0.000033 –0.092414 0.039691 0.000116 –0.793546 5.692985
SILVER –0.000152 –0.151437 0.065189 0.000399 –1.213096 7.832212
PLATINUM –0.000349 –0.058556 0.044835 0.000144 –0.380736 1.392237
PALLADIUM 0.000202 –0.083097 0.060895 0.000326 –0.391324 1.519173

Source: own calculations

It is worth noting that only investments in PALLADIUM generated profits 
in the average meaning. The highest loss was observed for PLATINUM. All re-
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turns are described by empirical distributions which are leptokurtic and skewed 
to the left. SILVER proved to be the most risky investment. The results show that 
probably empirical distributions are not normal. Table 2 provides results for test-
ing normality.

Table 2. Normality tests

Kołmogorow‑Smirnow Shapiro‑Wilk
Statistics df p‑value Statistics df p‑value

GOLD 0.075 1512 0.000 0.948 1512 0.000
SILVER 0.090 1512 0.000 0.920 1512 0.000
PLATINUM 0.038 1512 0.000 0.986 1512 0.000
PALLADIUM 0.045 1512 0.000 0.982 1512 0.000

Source: own calculations

None of the empirical distributions belongs to the family of normal distribu-
tions, which is confirmed in Figure 2 (examples for GOLD and PALLADIUM).

Figure 2. Histogram and QQ‑plot for GOLD (top) and PALLADIUM (bottom)

Source: own calculations
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The characteristics of financial time series observed in Figures 1–2 suggest 
a need to use a more sophisticated approach for volatility modelling than the 
one based on variance. In this paper, a class of mixed models is proposed: AR-
MA(1,1)‑GARCH(1,1) and ARMA(1,1)‑APARCH(1,1) for three types of error dis-
tributions: normal, student and GED. At this stage, it is worth presenting the charts 
for ACF and PACF functions (examples for PLATINUM and PALLADIUM).

Figure 3. ACF (top) and PACF (bottom) for PLATINUM (left) and PALLADIUM (right)

Source: own calculations

The information presented in the charts of autocorrelation and partial auto-
correlation functions indicates the order of lags for the ARMA part of the mod-
el. At the next stage, the parameters for both ARMA(1,1)‑GARCH(1,1) and AR-
MA(1,1)‑APARCH(1,1) models were estimated, presented respectively in Tables 
3 and 4.

Table 3. Estimated parameters for ARMA(1,1)‑GARCH(1,1) models using different error distributions

PARAMETERS μ φ1 ϕ1 α0 α1 β1

GOLD‑N –0.000034 –0.866590* 0.889920* 0.0000034* 0.0521569* 0.9181260*
p‑value 0.905 0.000 0.000 0.008 0.000 0.000
GOLD‑S –0.000034 –0.866590* 0.889920* 0.0000016* 0.0393204* 0.9499580*
p‑value 0.905 0.000 0.000 0.043 0.000 0.000
GOLD‑GED –0.000034 –0.866590* 0.889920* 0.0000019 0.0410499* 0.9411320*
p‑value 0.905 0.000 0.000 0.088 0.007 0.000
SILVER‑N –0.000153 –0.863676* 0.894182* 0.0000127 0.0977150* 0.8740900*
p‑value 0.770 0.000 0.000 0.136 0.028 0.000
SILVER‑S –0.000153 –0.863676* 0.894182* 0.0000015 0.0313255* 0.9674500*
p‑value 0.770 0.000 0.000 0.306 0.006 0.000
SILVER‑GED –0.000153 –0.863676* 0.894182* 0.0000029 0.0401945 0.9525580*
p‑value 0.770 0.000 0.000 0.529 0.281 0.000
PLATINUM‑N –0.000348 0.159606 –0.094631 0.0000091 0.0731035* 0.8640980*
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PARAMETERS μ φ1 ϕ1 α0 α1 β1

p‑value 0.295 0.630 0.777 0.284 0.036 0.000
PLATINUM‑S –0.000348 0.159606 –0.094631 0.0000054 0.0609924* 0.9020670*
p‑value 0.295 0.630 0.777 0.192 0.009 0.000
PLATINUM‑GED –0.000348 0.159606 –0.094631 0.0000070 0.0654589* 0.8865160*
p‑value 0.295 0.630 0.777 0.208 0.014 0.000
PALLADIUM‑N 0.000204 –0.023916 0.102124 0.0000047 0.0633423* 0.9231630*
p‑value 0.682 0.846 0.408 0.202 0.011 0.000
PALLADIUM‑S 0.000204 –0.023916 0.102124 0.0000038 0.0702613* 0.9210760*
p‑value 0.682 0.846 0.408 0.239 0.007 0.000
PALLADIUM‑GED 0.000204 –0.023916 0.102124 0.0000042 0.0670419* 0.9216080*
p‑value 0.682 0.846 0.408 0.206 0.007 0.000
* statistical significance at the level 0.05. 
N – normal distribution, S – student distribution, GED – General Error Distribution.

Source: own calculations

As we can infer from the data presented in Tables 3–4, not every model is sta-
tistically significant. If the ARMA(1,1)‑GARCH(1,1) model is of interest, statistical 
significance is observed for GOLD and SILVER, regardless of conditional error 
distribution. Taking into account the APARCH part of the model for describing 
conditional volatility, the majority of statistically significant parameters observed 
for SILVER are for the normally distributed error term. It is interesting that if the 
APARCH model is considered, the parameters describing the leverage effect are 
statistically significant only for PALLADIUM. The positive value (observed most-
ly for PLATINUM and PALLADIUM) means that the past negative shocks have 
a deeper impact on the current volatility. Tables 5–6 show the assessment of qual-
ity for both types of models.
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Table 5. Information criteria for ARMA(1,1)‑GARCH(1,1) models

Metal Error 
distribution LLF AIC BIC HQC

GOLD
Normal 4773.58 –9937.16 –9510.56 –9927.26
Student 4852.20 –9694.40 –9667.79 –9684.49
GED 4845.67 –9681.33 –9654.73 –9671.42

SILVER
Normal 3891.97 –7775.94 –7754.66 –7768.01
Student 3981.16 –7952.32 –7925.71 –7942.41
GED 3987.43 –7964.85 –7938.25 –7954.95

PLATINUM
Normal 4579.73 –9151.47 –9130.18 –9143.54
Student 4594.08 –9178.15 –9151.55 –9168.25
GED 4590.60 –9171.21 –9144.60 –9161.30

PALLADIUM
Normal 4011.20 –8014.39 –7993.11 –8006.47
Student 4029.54 –8049.09 –8022.48 –8039.18
GED 4025.42 –8040.84 –8014.23 –8030.93

Source: own calculations

Table 6. Information criteria for ARMA(1,1)‑APARCH(1,1) models

Metal Error 
distribution LLF AIC BIC HQC

GOLD
Normal 4774.33 –9536.66 –9504.74 –9524.77
Student 4852.51 –9691.02 –9653.78 –9677.15
GED 4845.68 –9677.36 –9640.11 –9663.49

SILVER
Normal 3892.64 –7773.29 –7741.36 –7761.40
Student 3982.08 –7950.16 –7912.91 –7936.29
GED 3988.19 –7962.39 –7925.14 –7948.52

PLATINUM
Normal 4582.49 –9152.99 –9121.06 –9141.10
Student 4595.76 –9177.52 –9140.27 –9163.65
GED 4592.53 –9171.07 –9133.82 –9157.19

PALLADIUM
Normal 4018.03 –8024.06 –7992.14 –8012.17
Student 4036.15 –8058.29 –8021.05 –8044.42
GED 4031.26 –8048.52 –8011.27 –8034.65

Source: own calculations

Taking into account the results provided by the information criteria, the low-
est values, regardless of the type of metal, were obtained for the student or GED 
distribution, for both ARMA(1,1)‑GARCH(1,1) and ARMA(1,1)‑APARCH(1,1) 
models. The theoretical models with corresponding real returns of SILVER and 
PALLADIUM are presented in Figures 4–5.
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Figure 4. ARMA(1,1)-GARCH(1,1)-Normal model for SILVER 
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Figure 5. ARMA(1,1)-APARCH(1,1)-Student model for PALLADIUM 

Source: own calculations 
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Figure 4. ARMA(1,1)‑GARCH(1,1)‑Normal model for SILVER
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Figure 5. ARMA(1,1)-APARCH(1,1)-Student model for PALLADIUM 
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Figure 5. ARMA(1,1)‑APARCH(1,1)‑Student model for PALLADIUM

Source: own calculations

In  the final part of  the research, all the estimated models were analysed 
in terms of forecasting VaR. According to the formulas (14)–(16), the correspond-
ing risk measures were calculated and presented in Table 7.
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Table 7. Information criteria for ARMA(1,1)‑APARCH(1,1) models

Risk measure GOLD SILVER PLATINUM PALLADIUM
VaR0.95 0.015966 0.030080 0.018192 0.028266
ES0.95 0.022678 0.040541 0.023528 0.037183
MS0.95 0.020999 0.038872 0.022191 0.034241
VaR0.99 0.027600 0.046788 0.025740 0.041081
ES0.99 0.031517 0.053502 0.031705 0.050374
MS0.99 0.031095 0.052211 0.030645 0.051040

Source: own calculations

The results presented in Table 7 indicate that the highest values of risk meas-
ure were obtained for investments in SILVER, whereas the lowest for investments 
in GOLD. These results strongly correspond to the basic descriptive statistics for 
these metals. Is worth mentioning again that taking into account the properties 
of risk measure VaR is not sufficient for measuring risk, so it is better to look at ES 
and MS. However, if we compare two coherent risk measures ES and MS, it is clear 
that MS has an advantage over ES, as the median in general is a robust measure, 
especially in terms of outliers.

At the end of the study, the hypothesis which states that the number of obser-
vations exceeding VaR complies with the expected one at the significance level 
is tested. The results of backtesting VaR using the POF test are shown in Tables 
8 and 9.

Table 8. Backtesting VaR using ARMA(1,1)‑GARCH(1,1) models

VaR0.95

NORMAL STUDENT GED
No** LRPOF No** LRPOF No** LRPOF

GOLD 97 5.88* 91 3.11 95 4.86*
SILVER 98 6.42* 90 2.73 94 4.39*
PLATINUM 96 5.36* 91 3.11 92 3.51
PALLADIUM 93 3.94* 89 2.37 94 4.39*
VaR0.99 No LRPOF No LRPOF No LRPOF

GOLD 26 6.51* 24 4.47* 24 4.47*
SILVER 26 6.51* 23 3.58 25 5.45*
PLATINUM 27 7.64* 25 5.45* 23 3.58
PALLADIUM 24 4.47* 25 5.45* 24 4.47*

* statistical significance at the level 0.05. 
** No – the number of observations exceeding VaR.

Source: own calculations
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Table 9. Backtesting VaR using ARMA(1,1)‑APARCH(1,1) models

VaR0.95

NORMAL STUDENT GED
No LRPOF No LRPOF No LRPOF

GOLD 97 5.88* 91 3.11 95 4.86*
SILVER 98 6.42* 90 2.73 94 4.39*
PLATINUM 96 5.36* 91 3.11 92 3.51
PALLADIUM 93 3.94* 89 2.37 94 4.39*
VaR0.99 No LRPOF No LRPOF No LRPOF

GOLD 27 7.64* 22 2.77 22 2.77
SILVER 26 6.51* 24 4.47* 23 3.58
PLATINUM 27 7.64* 25 5.45* 26 6.51*
PALLADIUM 25 5.45* 22 2.77 24 4.47*

* statistical significance at the level 0.05.

Source: own calculations

The critical value verifying the hypothesis about the number of observations 
exceeding VaR is . The results presented in Tables 8 and 9 show that, regardless 
of the level of quantile, the model with the error term normally distributed is not 
correct. The values of Kupiec’s test results are statistically significant. The study 
shows that the best model in this case is the one with residuals described by the 
student distribution (or rarely by the GED one). As we can see from the results 
of backtesting VaR, only for the student distribution of error term, the null hy-
pothesis is not rejected.

7. Conclusions

The analysis of volatility observed in prices and returns of financial time series 
requires from researchers a somewhat deeper look into the background of theoret-
ical models. This paper shows some results of the application of selected models 
and risk measures to describe the phenomenon of volatility observed in the pre-
cious metals market. The assets selected for this research are: GOLD, SILVER, 
PLATINUM, and PALLADIUM. Precious metals are an alternative investment 
area for classical investments undertaken in the capital market, especially during 
financial crises. Comparing the properties of financial time series of returns in the 
precious metals market to those observed for stock returns, it is worth emphasising 
the similarity of tools used for risk analysis in both markets.

In  this paper, a  class of  extended ARCH‑type models is  proposed – the 
asymmetric power ARCH models (APARCH). As presented in section 2, ARCH 
an GARCH models are special cases of APARCH models. This class of models 
was not proposed accidentally. The APARCH model contains two additional pa-
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rameters. The first one, δ, plays the role of a Box‑Cox transformation of the condi-
tional standard deviation σt, whereas the parameter γi reflects the leverage effect. 
As mentioned, the positive (negative) value of the parameter γi means that the past 
negative (positive) shocks have a deeper impact on current conditional volatili-
ty. Looking at the results, it can be seen that the ARMA(1,1)‑GARCH(1,1) model 
is statistically significant only for GOLD and SILVER, regardless of conditional 
error distribution. Taking into account the APARCH model, the majority of sta-
tistically significant parameters observed for SILVER are for the normally dis-
tributed error term. Additionally, if the APARCH model is used, the parameters 
describing the leverage effect are statistically significant only for PALLADIUM. 
The assessment of quality of the model with the use of information criteria indi-
cates that the lowest values, regardless of the type of metal, were obtained for the 
student or GED distribution, so these error terms in the models should be used for 
volatility modelling.

The analysis of volatility was enriched with risk measurement using VaR and 
measures based on it: Expected Shortfall and Median Shortfall. These two last 
measures belong to the family of coherent risk measures. In addition to the estima-
tion of risk measures, the hypothesis which states that the number of observations 
exceeding VaR complies with the expected ones at the significance level was ver-
ified using Kupiec’s test. The analysis shows that the best model in this case is the 
one with residuals described by the student distribution.

Summing up all the remarks and conclusions presented in this paper, a need 
to use more advanced models in the assessment of volatility in the market of pre-
cious metals than classical GARCH‑type models should be emphasised. It is also 
important to select an appropriate risk measure that will be robust to the presence 
of outliers.
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Wybrane modele klasy GARCH na rynku metali – testowanie wsteczne Value‑at‑Risk

Streszczenie: Analiza ryzyka na rynku finansowym wymaga poprawnej oceny zmienności zarówno 
cen, jak i stóp zwrotu interesujących inwestora aktywów. Szumy informacyjne, sytuacja gospodar‑
cza oraz polityczna, a także zwykła spekulacja powodują istotne trudności w stawianiu trafnych pro‑
gnoz. Z punktu widzenia inwestora kluczowym zagadnieniem jest minimalizacja ryzyka dużych strat.  
W artykule podjęto próbę zastosowania wybranych modeli zagnieżdżonych klasy ARMA‑GARCH oraz 
ARMA‑APARCH do oceny zmienności stóp zwrotu wybranych aktywów notowanych na rynku metali. 
Do oceny ryzyka inwestycji wykorzystano wartość zagrożoną VaR, natomiast jakość tej oceny z fak‑
tycznie zaobserwowanymi stratami zweryfikowano za pomocą wybranych testów przekroczeń. 

Słowa kluczowe: zmienność, modele klasy GARCH, ryzyko, Value‑at‑Risk, rynek metali
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