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1. Introduction

Our perception of an economic phenomenon often relates to an evaluation of prop-
erties of a function of a certain continuum. One may consider probability density
function of random variable describing an income of a household, one may consider
GDP per capita trajectory of a country during a decade, day and night number of vis-
its of an Internet user in an Internet service or a behaviour of an investor’s optimism
indicator within a month. Reducing the whole function to a certain set of scalars (e.g.,
mean, variance) very often denotes a significant loss of valuable information on the
phenomenon and in a consequence may lead to inappropriate perception of the phe-
nomenon. A “shape” of the consumer price index (CPI) during a month may bet-
ter express investor optimism during the considered period, as a specific sequence
of “peaks” and “valleys” in a CPI trajectory and may denote sequence of activity
bursts and consumer hesitations, and hence “a spectrum of moods” called optimism.

In the recent decades a very useful statistical methodology has been pro-
posed in this context and is now being intensively developed. The methodology
named functional data analysis (FDA) enables functional generalizations of the
well-known uni- and multivariate statistical techniques like analysis of variance,
kernel regression or classification techniques (see Ramsay, Silverman, 2005; Fer-
raty, Vieu, 2006; Ramsay, Hooker, Graves, 2009; Horvath, Kokoszka, 2012; Ko-
siorowski, Rydlewski, Snarska, 2019).

The FDA offers novel methods for decomposition of income densities or yield
curves, analyzing huge, sparse economic data sets. The FDA enables effective sta-
tistical analysis when number of variables exceeds number of observations. FDA
enables effective analysis of economic data streams, e.g., analysis of non-equally
spaced observed time series, prediction of a whole future trajectory rather than
single observations (Kosiorowski, 2016).

There are many important economic issues, which may be translated into lan-
guage of statistical classification analysis. Economic agents choose their invest-
ment, cooperation or production strategies taking into account an actual situation
and knowledge of the issue preserved in historical data. In a credit scoring, one
may classify a client as potentially credible or not. An evaluation of a candidate
for a certain position with regard to a category of her usefulness or a diagnosis
of a team as to its collaboration performance or a company as to its bankruptcy
closeness are direct and popular examples in this context.

Focusing our attention on certain more recent economic phenomena, one may
indicate, for example, a problem of choosing a time dependent strategy for an in-
vestment, e.g., “bid/ask” trajectory in an algorithmic trading, a “real time” choosing
contents of SMS alerts in a process of air quality monitoring in a city or choosing
a type of administrator answer in a process of Internet service monitoring for pos-
sible intrusions. More precisely: having at a disposal a so called training sample
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Z,=(X.Y),..Z,=(X,.Y,),

n’ n

where X' denotes a functional observation and Y, denotes its label, our aim is to pre-
dict the label for a new observation basing on functional observation.
In other words a classification rule (a classifier) is a function

d:X—7Y,

which assigns to a new functional observation X a prognosis of its label d(X). The
main aim of the classification analysis is to find a precise classifier in a certain
sense (see Steinwart, Christmann, 2008).

The real classification error is defined as

L(d)=P({d(x)=T}).

For known joint distribution of (X, Y) the best classification rule is called the
Bayes classifier (see Devroye, Giorfe, Lugosi, 1996). The Bayes classifier is a ref-
erence classifier for other classifiers, which at least partly are estimated from the
training sample. Classifiers’ performance generally depends on the underlying
distribution. There are exceptions however (see Devroye, Giorfe, Lugosi, 1996).
In fact, we seldom know joint distribution of (X, Y), so the Bayes classifier cannot
be directly used to obtain the optimal classifier. In practice, the information pro-
vided by the training sample is used to construct classifier, whose conditional error
is as close as possible to the Bayes error (see Vencalek, Pokotylo, 2018).

Although there is no agreement on how to understand robustness of a classi-
fication rule, we may apply a general idea of robustness stating that small chang-
es of an input of a statistical procedure should lead to small changes in an output
of the procedure (see Cuevas, 1988; Christmann, Salibian-Barrera, Van Aelst,
2013). By the output we can understand certain loss function related to the classi-
fication procedure or a quality measure of the procedure in the real classification
error style, for example, an empirical risk of the classifier.

Robust classification rule denotes a rule, which focuses on an influential majority
of data and which copes with certain amount of problems with data. In multivariate
case the concept of robustness in a context of classifiers was studied, among others,
by Hubert, Rousseeuw, Segaert (2016), and Christmann, Salibian-Barrera, Van Aelst
(2013). Hubert, Van Driessen (2004) considered an overall robustness of a classifier
in terms of breakdown point for the worst class performance. Their proposals rely
on “robustifying” classical approaches using for example M-estimators or trimming.

In this paper we focus our attention on an issue of robust classification of func-
tional objects and its effective applications in current macro-economic issues.
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The performance of a country’s economy strongly depends on expectations
as to its future behaviour. These expectations are very often operationalized
in a form of various ratings cyclically published by leading banking or consulting
groups. On a technical level one may express a rating as certain function of classi-
fiers. A better FDA classifier enables a better forecasting of the state of the econo-
my, for example, aggregated CCI (measuring consumers optimism) and IPI (meas-
uring industry optimism), exploiting not only scalar values of the indices but also
the trajectories/shapes of functions describing the indices, allow for a construction
of a better economic barometer or rating. The classifiers comparison should take
into account the problem of outlying observations, wrong labelling and missing
data problem. That is why the classifiers’ robustness should be compared. In our
opinion, a comparison based on the misclassification rate and computational com-
plexity has strong justification in the area of modern e-economy and empirical fi-
nance (Kosiorowski, Mielczarek, Rydlewski, 2017; 2018).

2. Review of functional classifiers

In the recent years several algorithms for classification of functional data have been
proposed. Generally speaking, the proposed classifiers are not uniformly robust
i.e., their performance may strongly depend on a very small fraction of especially
“bad” outlying (in a functional sense) observations. It should be stressed that com-
monly acceptable definition of robustness of a classification procedure does not
currently exist. We suppose that robustness in this case should take into account
a local nature of classification procedure — perhaps robustness should be defined
with respect to specified class rather than regarding the whole data set.

Classification methods for functional data include:

1) k-nearest neighbours (kNN) methods (for example see Cuevas, Febrero-Bande,

Fraiman, 2007);

2) reproducing kernel of a Hilbert space (RKHS) methods (for example see

Scholkopf, Smola, 2002; Berlinet, Thomas-Agnan, 2004; Preda, 2007);

3) methods based on depth measures (for example see Cuevas, Fraiman, 2009);
4) methods based on depth-depth plot (see Li, Cuesta-Albertos, Liu, 2012);
5) neural networks and other methods (see Haykin, 2009).

1. In the k-nearest neighbours methods we fix £ € N and a dissimilarity meas-
ure. The classified function is then assigned to a class, which is most common
among its k nearest neighbours. Note, that different dissimilarity measures give
different neighbourhoods. The choice of the number £ and the dissimilarity meas-
ure defining neighbourhood is still an open problem (Ferraty, Vieu, 2006). Some
variant of the method is the nearest centroid method, where the functional obser-
vation is assigned the label of the class of training samples whose centroid is clos-
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est to the considered observation. Centroid is a functional mean, or a functional
median induced by functional depth. Some modifications of the k-nearest neigh-
bours methods were proposed (for example see Vencalek, 2013).

2. For a second family of methods, let X'be a nonempty set and let H be a Hilbert
space of functions f; X — R equipped with an inner product <, >. The space H
is called reproducing kernel Hilbert space (RKHS), if there exists a non-negative
and symmetric function K: X X X — R, which possess the following properties:

<f:K(X,-)>:f(X)foranyf€H (1)

(specifically, a formula (K (X,-),K(Z,))=K(X,Z) holds true)

H:span{K(Z,-):ZeX} (2)

Exploiting Mercer’s Theorem, a mapping ®: X — R can be constructed such,
that <®(Z), ®(Y) > = K(Z, Y) for almost all ¥, Z, € X, where learning sample
is(X,Y)={X,Y),...,(X,Y)}, where X is a function, and Y is a label. Then the
following formulas are calculated

K(X,.X,)=<®(X,).2(X,)>, 3)

C(X) = Sgn(ZZZICkK(XwX))’ 4)

where coefficients ¢, are chosen so that congruency condition holds true,
namely c¢(X) =Y.

The coefficients ¢, can be chosen if the matrix of elements K(X, X)) is nonsin-
gular (invertible). So it suffices that the functional data are linearly independent.
The formula (2) enables conducting of a classification. Note, however, that most
packages, i.e. fda.usc do not explain how to deal with the problem of linearly de-
pendent functional data. It is an important problem, because the coefficients in the
sum may not be unique in such a case.

It is worth noticing, that Goérecki, Krzysko, Wolynski (2018) constructed an in-
dependence measure and independence test between kernels related to multivari-
ate functional data, which also may be incorporated into a construction of a new
barometer of economic optimism.

Note that in practice, at the beginning, a kernel is chosen. A feature space
H is then constructed so that the chosen kernel produces an inner product in that
space. Observations are transformed into a Hilbert space. It turns out that, if some
conditions are fulfilled, it suffices to know the inner product only.

We consider a space of all functions mapping a space L* () into R, which
is denoted with X, namely
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X =R"® (5)

and any element of that space can be identified with a classifier.
Let K:L*(Q)xL*(Q) — R be any kernel, i.e.:

K(f.g)=K(g.f) (6)
K(f.f)z0 (7)
K(f.f)=0& f=0 (8)

for any functions f,g € L’ (Q), and H be a reproducing kernel Hilbert space. From
Mercer’s Theorem there exists a mapping ®: I (Q) — H , such that

<®(f).2(g)>,=K(/.8) )

for any functions f,g € L’ (Q). In Hilbert space H, any function /'€ X has the fol-
lowing form

SX)=<f K (X) >, (10)

where X is an element of L’ (2) space.
Specifically, there exists a classifier fulfilling a congruency condition f{X) =Y.
Note that the reproducing kernel imposes a distinctive form of the classifi-
er, i.e.

IO=> oK (Z,.), (11)

where the family is summable with respect to the norm induced by the inner prod-
uct in the Hilbert space H. The above formula is difficult to implement numeri-
cally as family of sets X is uncountable. If the training sample is linearly depen-
dent, then the above sum cannot be reduced to a finite sum. In other words, if the
training sample is linearly dependent, it is not clear how to approximate the sum
in formula (9). Moreover, fda.usc package description does not explain, how to cut
off the rest of the infinite sum in the formula (9). If the training sample is linearly
independent, the determinant of the matrix K(X,, X) , is nonzero and the fol-
lowing formula holds true

ij=l,...,

f(X)= Z;laiK(Zi,-). (12)
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3. Cuevas, Febrero-Bande, Fraiman (2007) considered the random projection
depth. It measures the depth of the functional data under projections and takes ad-
ditional information of their derivatives. Each function and its first derivative are
projected along a random direction. Thus a point in R? is defined and a two-di-
mensional depth enables ordering of the projected points. Cuevas, Febrero-Bande,
Fraiman (2007) showed that if we use a lot of random projections, the average
of the depths of the projected two-dimensional points defines the depth for func-
tional data. Our computations, conducted by means of fda.usc R package are based
on this approach, where a Fraiman-Muniz depth is considered.

4. The DD-plot classifier was proposed by Li, Cuesta-Albertos, Liu (2012).
First, it transforms the data into depth versus depth space (DD-space). Next, the
data points are separated by suitable curve from a given family of functions, so that
the number of errors when classifying points from the training sample is mini-
mized. The authors showed that their DD-classifier is asymptotically equivalent
to the Bayes rule under some conditions. DD-classifier can be extended to multi-
class problem by using majority vote method, i.e., DD-classifier is applied to each
of the possible pairs from all the considered classes and then the majority vote
method determines the final memberships of the functional observations. Other
methods based on the concept of DD-plot can be proposed as well (i.e., see Ko-
siorowski, Mielczarek, Rydlewski, 2017).

3. Our proposal

This section describes numerically stable and effective algorithm of affine clas-
sifier for functional data, basing on properties of Gram-Schmidt matrix. Outline
of our method for two-class classifier has been recently presented in Kosiorowski,
Mielczarek, Rydlewski (2018). Let us come to our proposition’s full description.

LetX,, X, ..., X be any functional data from Hilbert space L’ (©2) and num-
bers Y, Y, ..., Y belabelsie. Y, €{-11},ie{l,...,m}. Patterns X are functions
mapping set Q into real numbers and the following inequality is true

fQ|Xi(w)|2dw<oo (13)

foranyie {1, 2, ..., m}
We assume in the whole paper, that set Q is bounded, and then the space L* ()
is separable. Hence, there exists an orthonormal basis {Z,}>°  and every function

X from the space L’ (Q) can be described as the following series

X:Z:C:]<X’Zn >.Zn9 (14)
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where the series convergence is a convergence in the sense of norm of the space
L (Q). In practice, we fix a natural number K and we determine factors {c,}*
such, that

A K
X = Zn:lcn .Zﬂ 2 (15)
so that they minimize a function ¢: R — R given by the following formula
¢(c):(Xf¢~c)T~(Xf¢~c), (16)
j=1,..,K

where X = (X{(t)), ..., X(¢,)) and ¢ is a matrix of the form [Z S (t,.)]

i=1,...M
We propose a classifier for functional data in the form

f(X)= QX(w)W(w)dw—&—b, (17)

where b is any real number and weight function W is essentially bounded, i.e.
WeL, (), and chosen so that affine functional f'be data-consistent (congru-
ent), i.e.

Yf(x)=1, (18)

foranyi € {1, 2, ..., m}.

In other words, we are given empirical data (X, ¥)), (X,, ), ..., (X , Y ),. Bas-
ing on the data, we classify a new functional observation X into one of the groups
looking only at sgn(f(X)). The classifier doesn’t work, if f{X) = 0.

Existence of the weight function W, as we show in the paper, is guaranteed
with linear independence of the random functions X, X, ..., X .

We show, that assuming linear independence, an operator 4:L* (Q) — R" giv-
en for any function W € I* () with formula

AW)=( [ X (W (@)dw, [ X, (@ (@)oo, [ X, (@)W (@)dw]  (19)
is a surjection. Particularly, there exists a weight function W such, that

m
——t—

AW)+(b,b,....b)=(Y,.Y,,....Y,), (20)

m

so forany i € {1, ..., m} we have

f(Xi): X, (w)W(w)dw—l—b:Y;. (21

Q
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Hence
Yf(X)=YY =1, (22)
where - is a standard multiplication.
For any subset {i,i,,....i, ,} €{L,2,...,m} let
Vi, :span{Xil,X, ""’Ximfl} (23)

Haly e esly Ll

we then get X, ¢V, . ., where i, € {L,2,....m}\ {ijsiys--si,_, } -
Hahn-Banach Theorem states, that there exists a bounded functional

g 1L’ (2) — R such, that

U sly seeesly

&, (X, ) =0, (24)
forje {l,...,m—1} and
i (X, )=1 (25)
The functional g, ., must be of the form

g’] R (X) = QX (L(J) I/Vil sy el (UJ) dw’ (26)

where W, ,
Particularly

is a function from the L’ () space.

R" = span {A (Wil,iz,...,i.,,,l) :{il,i2,...,im71} C {1,2,...,m}}. (27)

We have just shown the following

Theorem:

For any real number b there exists a function W € L’(Q2) such, that a set
of equalities

V([ X @) (w)dwb) =1 (28)

i o !

fori e {1, 2, ..., m} has a solution. Particularly, the weight function ¥ satisfies the
following set of equalities

fﬂXi(w)W(w)dw—i—b:Yi,forie{l,...,m}. (29)
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It is now obvious, that in order to solve (15) it suffices to solve the following
set of equations, that is, it suffices to determine a weight function W, or equiva-
lently to find a functional g such, that

g<Xi): QXi (w)W(w)deY(l—Kb>, (30)
fori e {1,2, ..., m}.

When we determine the functional g, then we obtain

Yg(X,)=Y Y (1-Yb)=1-Y,-b. (31)

i i

In consequence

Yig(Xi):Yi' i(l_Yib)zl_Yi'b' (32)
fori e {1,2, ..., m}.

Hence, the hyperplane separating for functional data can be determined.

Our proposition of classifier can be generalized to the multiclass case.
Let X, X, ..., X be any functional data from the Hilbert space L*(Q2) , and let
Y, Y, .., Y beasequence of k-element classes, i.e.,Y; € {1,...k}ie{l,....,m} ,
where k <<m.

First, all possible two class classifications are performed. Subsequently, the
majority vote method is applied in order to obtain a final classification. However,
it is computationally very demanding, so it is available for smaller training sets.
For larger data sets we recommend the following procedure. The training data
{(X, (1), Y, )}, is divided into two classes. Subsequently, the separating hyperplane
is determined. We repeat the process of the training data division into two class-
es until all classes are separated. The training data division order is established
empirically. We recommend to make outliergrams (see Arribas-Gil, Romo, 2013)
or functional boxplots (see Kosiorowski, Rydlewski, Zawadzki, 2018; Kosiorowski,
Zawadzki, 2019, and references therein) in order to divide the similar classes of func-
tions at the most distant step of the training sample division procedure.

4. Robustness of a classification rule for
functional data

Generally speaking, by a robust statistical procedure we mean a procedure which
correctly expresses a tendency represented by an influential majority of probabil-
ity mass, or a fraction of data (Hubert, Rousseeuw, Segaert, 2016). In the context
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of a classifier, we usually consider its robustness with respect to a contamination
of a training sample. We evaluate it in terms of an error of classification. It is worth
underlining, that in general, robustness of the procedure depends on an underlying
model of the training sample. Robustness issues in functional setup are especially
difficult and in a great part are still open. Let us only consider, that in the functional
setup there exist various types of outlyingness that are not present elsewhere. One
may indicate shape outliers, amplitude outliers and outliers with respect to the co-
variance structure. For assessing the robustness of a procedure, one can propose
a useful variant of qualitative robustness (see Cuevas, 1988; Christmann, Salibi-
an-Barrera, Van Aelst, 2013): small changes of input should lead to small changes
of output or a measure of quality of output.

The robustness of the classifying rule toward outliers depends on the func-
tional outliers’ type. It should be different for the functional shape outliers,
functional amplitude outliers and for functional outliers with respect to the co-
variance structure.

That is why it is not easy to approximate breakdown point or influence func-
tion of the procedure. It should be stressed, that there is no agreement as to the
breakdown point or influence function concepts even in the multivariate classifi-
cation case, however some important results on influence functions were obtained
by Christmann, Van Messem (2008) (see also Steinwart, Christmann, 2008). Some
attempts to tackle the robustness issue in functional classification case have been
made (for example, see Hubert, Rousseeuw, Segaert, 2016). We follow the quali-
tative robustness concept and adapt it to the functional classification case.

Definition 1 (Cuevas, 1988): We say that the sequence of functionals is qual-
itatively robust at P € P, if for any € > 0, there exists a 6 > 0 and a positive integer
n, such that, forall O € Pand n>n,

d,(P.Q)<8=d,(L,(T,).L,(T,)) <e, (33)

where P, Q denote two mixtures of distributions in L? Hilbert space of functions and
L,L, denote estimated characteristics of P, O (i.e., e.g. their functional medians).

In a sample case we replace P, Q by means of empirical measures P , O es-
timated from two samples X" and ¥",L, ,L, , may denote values of quality mea-
sures of classification outputs i.e., e. g., classification error.

The qualitative robustness concept has been used by Christmann, Salibi-
an-Barrera, Van Aelst (2013), who show that the bootstrap distribution estimates
of estimators defined by a functional, which is continuous uniformly over neigh-
bourhoods of distributions, are qualitatively robust. The equicontinuity of rele-
vant functionals seems to be equivalent to the qualitative robustness. Note that
in the functional classification case at least one obvious problem arises. We do not
know, how to operationize the distance (i.e., d, in formula (19)) between probabil-
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istic measures defining distribution of functional random variables. The distribu-
tions are theoretically known (see Bosq, 2000), but it is still an open question how
to obtain their characteristics, e.g., cumulative distribution function, probabili-
ty density function, or d,. The first possible solution is to make PCA projections
of the functional data, thus reducing the problem to the multidimensional case (see
Gorecki et al., 2018). Finally, the qualitative robustness is analysed with tools de-
signed for a multidimensional case. The second possibility is to apply a data-ana-
lytic approach, where we evaluate empirical classification error within simulation
studies. We follow this approach in our paper. Another possibility is to bypass the
problem of calculating the distance between probabilistic measures defining dis-
tribution of functional random variables and to focus on estimating the functional
distributions characteristics, we are able to obtain, namely, expected value, or oth-
er selected moments of functional random variable. Hence, for example, we can
estimate substitute the condition d,(P, Q) < ¢ in formula (19) with ||EP — EQ|| <.
It is, no doubt, a simplification of the problem, but it allows for rough evaluation
of the qualitative robustness.

5. Properties of the proposal

A performance of a classifier is commonly evaluated in terms of the classification
error. It seems that it is often the most reasonable approach, as we try to justify
in Section 4. Let g denote our classification rule. The distribution of (X, Y) is un-
known, so we estimate the empirical risk

A 1 n
Lg)=>2 2 Naosyeny: (34)

where 1, denotes the indicator function of the set S.

We implemented our method ourselves, but other classification methods were
calculated with R packages fda.usc (see Febrero-Bande, de la Fuente, 2012) and
roahd (see Tarabelloni, 2017).

5.1. Simulation Studies

In order to evaluate properties of the classifiers we conducted rich simulation stud-
ies. We used, among others, the following scheme. We generated 500 observations
from four Gaussian processes centered in 5, 10, 15, 20, respectively, and with con-
stant covariance function equal to 7.5. We gave four relevant labels to each func-
tion, and grouped all the functional observations. Subsequently, we estimated the
functional classifiers’ quality with cross-validation method. In Table 1 the empir-
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ical risk comparison of selected functional classifiers is presented. Fraction of out-
liers denotes functional amplitude outliers, which represent 5%, 10% and 15%
of the training set. Random projection depth, where Fraiman-Muniz depth (FM)
is used, and DD-plot classifier, appeared to be the best in our simulation studies,
where there were no outliers in the training set, and when we exchanged 5%, 10%
and 15% of the training set with functional amplitude outliers, which have been
generated from the process

F(f) = 60sin——-1), +84/2 cos 1, (35)
27 27

where v, and v, are independent standard Gaussian random variables.

In Table 2 the empirical risk comparison of selected functional classifiers
is presented. Fraction of outliers denotes functional shape outliers, which represent
5%, 10% and 15% of the training set. Note, that even in the case of 5% shape outli-
ers in the training set, all classifiers give rather useless results. Moreover, for some
classifiers the increase in shape outliers’ number may decrease the empirical risk.
It seems counterintuitive, but we chose the special shape outliers in order to ob-
tain the results, namely the shape outliers have been generated from the process

G (t) — wlefsin(Zwt) + 7)[}2@005(27”) , (3 6)

where y, and v, are independent standard Gaussian random variables.
In Figure 1 the example sample trajectories from F(f) and G(¢) are presented.

20

-20
1
5

e |
h T T T T T T T T T T T T

0.0 02 04 06 08 1.0 00 02 04 06 08 10
Figure 1. Sample trajectories of F(t) (left) and G(t) (right)

Source: own calculations

The form of the trajectories of the process means that the shape outliers are
virtually the shape outliers, which was checked with outliergrams, and further-
more they are linearly independent with the training set. Notwithstanding, the clean
training set consists of almost linearly dependent functions. The latter fact causes
that for the uncontaminated training set, the determinant of matrix K(X, X)
is close to zero, which explains why RKHS method and our method do not work
well. It also explains, why depth-based methods do not give satisfactory results.
That is why the knn method appeared to be relatively the best one. Almost linear
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independence of the outlying functional outliers to the original data caused that
empirical risk decreased with the number of outliers. The fact is even more visible
in an empirical example of CCL

Table 1. Empirical risk comparison of selected functional classifiers, where functional amplitude
outliers represent some fraction of the training set

Classifier Fraction of outliers

0% 5% 10% 15%
Our method 37% 37% 38% 43%
Gaussian kernel 32% 39% 41% 47%
Epanechnikov kernel 29% 29% 35% 38%
Polynomial kernel 34% 49% 50% 63%
knn classifier 32% 46% 48% 53%
random projection depth 22% 22% 34% 35%
DD-plot classifier 18% 20% 22% 28%

Source: own calculations

Table 2. Empirical risk comparison of selected functional classifiers, where functional shape outliers
represent some fraction of the training set

Classifier Fraction of outliers

0% 5% 10% 15%
Our method 37% 63% 59% 67%
Gaussian kernel 32% 69% 71% 87%
Epanechnikov kernel 29% 85% 83% 89%
Polynomial kernel 34% 79% 84% 85%
knn classifier 32% 54% 65% 65%
random projection depth 22% 78% 76% 75%
DD-plot classifier 18% 80% 88% 88%

Source: own calculations

6. Empirical analysis of CCl

We considered Consumer Confidence Index (CCI) for USA from January, 1960
to December, 2017 (see OECD, 2018). For discussion of economical indices see
Biatek (2012). Basing on monthly CCI we constructed a CCI function for every
year. In other words, we had only 58 pieces of functional data in the clean train-
ing set. Every function was then labelled, in order to describe the state of the USA
economy. The labelling scheme consisted of checking whether CCI increased,
or decreased in the considered year. Subsequently, we evaluated, whether the CCI
was monthly more often above, or below the base level of a 100. Thus four different
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labels have been given. In Figure 2 the four groups of the considered CCI functions
are presented, as well as the empirical functional mean functions.

cclgroup 1 cCl group 2

102

101

100

month month

Figure 2. Four groups of CCl functions, functional means are marked in red
Source: own calculations

Subsequently, we estimated the functional classifiers’ quality with the
cross-validation method. In Table 3 the empirical risk comparison of selected func-
tional classifiers is presented. Fraction of outliers denotes functional amplitude out-
liers, which represent 5%, 10% and 15% of the training set. The amplitude outliers
have been generated from (35), as in the preceding empirical example.

In Table 4 the empirical risk comparison of selected functional classifiers
is presented. Fraction of outliers denotes functional shape outliers, which repre-
sent 5%, 10% and 15% of the training set. The shape outliers have been generated
from (36), as in the preceding empirical example as well. Random projection depth
classifier, where Fraiman-Muniz depth (FM) is used, appeared to be the best for
training sets uncontaminated and contaminated by outliers. As mentioned earlier,
the linear independence of both the outlying shape and amplitude functions from
the original data caused that empirical risk decreased with the number of outliers.
Moreover, the increase in shape outliers’ number may decrease the empirical risk.
It is not only the result of the special shape outliers, but it is also caused by the
small training set of 58 functions. Exchanging even a small fraction of the train-
ing set with outliers easily alters the result.
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Table 3. Empirical risk comparison of selected functional classifiers of CCl function, where functional
amplitude outliers represent some fraction of the training set

Classifier Fraction of outliers

0% 5% 10% 15%
Our method 65% 69% 69% 69%
Gaussian kernel 62% 70% 70% 73%
Epanechnikov kernel 58% 64% 67% 71%
Polynomial kernel 49% 64% 66% 69%
knn classifier 69% 75% 73% 77%
random projection depth 28% 27% 31% 34%
DD-plot classifier 30% 42% 49% 66%

Source: own calculations

Table 4. Empirical risk comparison of selected functional classifiers of CCl function, where functional
shape outliers represent some fraction of the training set

Classifi Fraction of outliers

assien 0% 5% 10% 15%
Our method 65% 64% 62% 55%
Gaussian kernel 62% 51% 51% 36%
Epanechnikov kernel 58% 64% 39% 31%
Polynomial kernel 49% 45% 42% 39%
knn classifier 69% 35% 31% 72%
random projection depth 28% 27% 32% 44%
DD-plot classifier 30% 32% 59% 51%

Source: own calculations

7. Conclusions and recommendations

It is quite obvious that there is no uniformly best classification method. If the data
are linearly dependent or almost linearly dependent, than all tested functional clas-
sifiers fail. The main result of the paper is that our study shows that even a small
number of outliers linearly independent from the training sample, which is in turn
almost linearly dependent itself, corrupt all analysed classifiers, even if they are
5% shape or amplitude outliers in the training sample consisting of functional el-
ements. It is the result of the fact that relevant matrices equal zero or are close
to zero.

In Table 5 average computation times (in seconds) for presented methods,
where functional shape outliers represent some fraction of the training set, are
presented. The average computation times for presented methods, where function-
al amplitude outliers represent some fraction of the training set, are comparable.

FOE 2(347) 2020 www.czasopisma.uni.lodz.pl/foe/


http://www.czasopisma.uni.lodz.pl/foe/

A Critical Study of Usefulness of Selected Functional Classifiers in Economics 87

Table 5. Average computation times (in seconds) for presented methods, where functional shape
outliers represent some fraction of the training set

Classifier Fraction of outliers

0% 5% 10% 15%
Our method 247 s 290 s 312s 301 s
Gaussian kernel 610 s 643 s 623 s 618 s
Epanechnikov kernel 646 s 645 s 655 s 662 s
Polynomial kernel 607 s 631s 598 s 608 s
knn classifier 203 s 236's 225's 220's
random projection depth 827 s 820 s 851's 817 s
DD-plot classifier 856 s 843 s 862 s 849 s

Source: own calculations

Random projection depth classifier, where Fraiman-Muniz depth is used, ap-
peared to be the best for training sets uncontaminated and contaminated by a small
number of shape outliers. Depth-based methods have at least one important disad-
vantage, namely they require a large memory pool, due to the necessity of func-
tional depth computations. That is why they are inadequate when analysed data
set is large. If the training set is contaminated with greater fraction of shape outli-
ers, then knn-method works relatively well. The method we proposed works well,
if we consider two class classification, and note that our method is computation-
ally less intensive — it requires less memory pool (see Kosiorowski, Mielczarek,
Rydlewski, 2018), so it is worth recommending to perform classifications of big
data sets in two-class setups.

Results presented in the paper can be applied to different fields of e-econo-
my, namely in website management, spam filtering, or protection of computer sys-
tems against hacking. As modern economy provides a great deal of functional data
sets, some non-obvious applications in the economy can be considered. They are
connected, i.e. with optimization of electricity production, municipal road traffic
management, or optimization of local air-protection policy (see Kosiorowski, Ry-
dlewski, Zawadzki, 2018). Finally, we would like to stress that a classification rule
for functional data enables a consideration of not only scalar values of economic
quantities but also the trajectories/shapes of functions describing the quantities.
Often, the scalar values describe averages, while managers may be more inter-
ested in peak or depression areas. This knowledge is summarized as a function
describing a process. Looking further, the classification rule for functional data
enables discrimination between the possible paths which the process is following.
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Krytyczna analiza wybranych klasyfikatoréw dla danych funkcjonalnych w kontekscie ich
zastosowan w ekonomii

Streszczenie: \W artykule przeprowadzono krytyczna analize najbardziej znanych klasyfikatorow dla
danych funkcjonalnych. Ponadto zaproponowano nowy klasyfikator dla danych funkcjonalnych. Prze-
dyskutowano pewne, zwigzane z odpornoscia, wiasnosci rozwazanych klasyfikatorow. Wypracowane
w artykule podejscie moze zosta¢ uzyte do przewidywania stanu gospodarki na podstawie indeksu
mierzacego optymizm konsumentow — CCl (Consumer Confidence Index) oraz indeksu odzwiercie-
dlajacego optymizm w sektorze przemystowym — IPI (Industrial Price Index), przy czym wykorzystuje
sie nie tylko skalarne wartosci indeksu, lecz takze cat trajektorie/ksztatt funkcji opisujacej dany in-
deks. W zwigzku z tym nasze rozwazania mogga by¢ pomocne w skonstruowaniu lepszego barometru
stanu gospodarki. O ile wiadomo autorom, jest to pierwsze poréwnanie klasyfikatoréw dla danych
funkcjonalnych ze wzgledu na kryterium ich uzytecznosci aplikacyjnej w ekonomii. Gtéwnym celem
artykutu jest zaprezentowanie, jak mata frakcja obserwacji nietypowych w prébce uczacej, bedgcych
liniowo niezaleznymi z prébka uczaca, ktdra z kolei skfada sie z funkcji prawie liniowo zaleznych, jest
w stanie powaznie zaburzy¢ wyniki klasyfikacji dla wszystkich rozpatrywanych klasyfikatoréw.

Stowa kluczowe: klasyfikator funkcjonalny, analiza danych funkcjonalnych, metody odporne, baro-
metr optymizmu w ekonomii
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