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1. Introduction

This paper discusses some studies of optimal chemical balance weighing de‑
signs. The possibility of using the proposed methodology for measuring econom‑
ic phenomena is presented in the literature (see Banerjee, 1975: 33–48; Ceranka, 
Graczyk, 2014a: 317–320).

Any chemical balance weighing design is defined as a design in which we de‑
termine unknown measurements of p objects in n measurement operations ac‑
cording to the model y = Xw + e, where y is a n × 1 random vector of the record‑
ed results of measurements, X = (xij) ∈ Ψn×p(–1, 0, 1) denotes the class of matrices 
with elements xij = 1, –1 or 0, i = 1, 2, …, n, j = 1, 2, …, p. Next, w is a p × 1 vec‑
tor of unknown measurements of objects, e is an n × 1 random vector of errors, 
E(e) = 0n and E(ee’) = σ2G, G is a known positive definite matrix.

The problem is to determine all unknown measurements of p objects using exact‑
ly n measurements. Due to this fact, we use normal equations yGXwXGX 11 'ˆ' −− = , 
where ŵ  is the vector estimated by the least squares method. If X is of full column 
rank, then the least squares estimator of w is given by ( ) yGXXGXw 111 ''ˆ −−−=  and 
the covariance matrix of ŵ  is equal to ( ) ( ) 11'ˆV −− XGXw 2ó=σ2( ) ( ) 11'ˆV −− XGXw 2ó= .

If we assume that experimental errors are equally negatively correlated, then 
we are working with the matrix E(ee’) = σ2G, where G is of the form:

 g g= - + > < <( )( )' 1
1n n n n

r r r
-
-

G I1 1 1 , 0, 0,mmm, (1)

where In is the identity matrix of rank n, 1n is n × 1 vector of ones.

2. D-optimal design

The issues concerning the determination of D‑optimal designs were presented 
in the literature. The classical works include Raghavarao (1971: 315–321), Jacroux, 
Wong and Masaro (1983: 213–230), Shah and Sinha (1989: 1–15).

If we consider the class of the chemical balance weighing designs Ψn×p (–1, 
0, 1), then the optimality criteria are the functions of the matrix (X’G–1X)–1 
and the elements of the determined matrix X of the optimal design have to be‑
long to the set {–1, 0, 1}. For a complete theory, we refer the reader to the pa‑
pers Masaro, Wong (2008a: 1392–1400, 2008b: 4093–4101), Ceranka, Graczyk 
(2016: 73–82).

The design Xd ∈ Ψn×p(–1, 0, 1) is D‑optimal if det(Xd’G
–1Xd) =  

max{det(X’G–1X): X ∈ Ψn×p(–1, 0, 1)}.
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From the study of Ceranka, Graczyk (2014b: 11–13), we have:
Definition 1. Any non‑singular chemical balance weighing design X ∈ Ψn×p(–1, 

0, 1) is regular D‑optimal if

 ( ) ( )
( )

( )

11
2

1
det  

2
1 1

p

g

m u
m

n

r

r
r

--

æ ö÷ç ÷ç ÷ç ÷ç - ÷ç ÷ç ÷= ÷ç ÷ç - ÷ç ÷ç - ÷ç ÷ç ÷+ -è

¢

ø

X G X ,

where m = max{m1, m2, …, mp}, mj denotes the number of elements equal to 1 or –1 
in j‑th column of X, u = min{u1, u2, …, up}, uj denotes the number of elements equal 
to –1 in j‑th column of X.

Theorem 1. Any non‑singular chemical balance weighing design X ∈ Ψn×p(–1, 
0, 1) is regular D‑optimal if:

a) ( )
( )

( )2
1 1

1 1p p p p

m u
m

n
r

r
-¢

-
= - -

+ -
X G X I I1

2

,

b) ( )'1 2 1pn m u=± -X .

The problem is to provide a regular D‑optimal design in the class Ψn×p(–1, 0, 1). For 
any pair of the number of objects and number of measurements, it is not possible 
to determine a regular D‑optimal design. Therefore, the aim of the study present‑
ed here is to give a new construction method of such a matrix and thus expand 
the class Ψn×p(–1, 0, 1) in which optimal designs exist. It is worth noting that some 
problems related to the regular D‑optimal design are given in Ceranka, Graczyk 
(2015: 36–39; 2016: 74–77; 2018: 5–16). Now, we suggest forming the matrix of the 
optimal design based on the set of incidence matrices of balanced incomplete block 
designs and balanced bipartite weighing designs.

3. Construction of regular D-optimal designs

3.1. Block designs

In this section, we present the definitions of the balanced incomplete block design 
given by Raghavarao, Padgett (2005: 54–79) and the balanced bipartite weighing 
design given in Huang (1976: 20–30).

A balanced incomplete block design given by the incidence matrix N is an ar‑
rangement of v treatments in b blocks, each of size k, arranged in such a way that 
each treatment occurs at most once in each block, occurs in exactly r blocks, and 
each pair of treatments occurs together in exactly λ blocks. The integers v, b, r, k, λ 
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are called the parameters of the balanced incomplete block design. The parameters 
satisfy the following relations vr = bk, λ(v – 1) = r(k – 1), ( )' '

v v vr l l= - +NN I 1 1 .
A balanced bipartite weighing design given by the incidence matrix N* 

is an arrangement of v treatments into b blocks, such that each block containing 
k distinct treatments is divided into 2 subblocks containing k1 and k2 treatments, 
respectively, k = k1 + k2. Each treatment appears in r blocks. Each pair of treat‑
ments from different subblocks appears together in λ1 blocks and each pair of treat‑
ments from the same subblock appears together in λ2 blocks. The integers v, b, r, 
k1, k2, λ1, λ2 are called the parameters of the balanced bipartite weighing design. 
Let N* be the incidence matrix of such a design. If k1 ≠ k2, then each object occurs 
r1 = λ1(ν – 1)/2k2 times in the first subblock and r2 = λ1(ν – 1)/2k1 times in the sec‑
ond subblock. The parameters satisfy

 vr = bk, ( ) 1 1
1 1 20.5 1b v v k kl - -= - , ( ) ( )( ) 1 1

2 1 1 1 2 2 1 20.5 1 1k k k k k kl l - -= - + - ,

 ( ) 1 1
1 2 1 1 20.5 1 ,r r r k v k kl - -= + = -  ( ) ( )* *'

1 2 1 2 1 1'v v vr l l l l= - - + +N N I .

3.2. The design construction

Now, we will construct the design matrix X ∈ Ψn×p(–1, 0, 1) of the regular D‑opti‑
mal design more precisely. We take into our account the incidence matrix N1 of the 
balanced incomplete block design with the parameters ν, b1, r1, k1, λ1 and the inci‑
dence matrix N2

* of the balanced bipartite weighing design with the parameters ν, 
b2, r2, k12, k22, λ12, λ22. From the incidence matrix N2

* we form the matrix N2 by mul‑
tiplying each element belonging to the first subblock by –1. Thus, let us consider 
any chemical balance weighing design X in the form:

 é ù1

2

2 ' 1 1'
.

'
v v-

ê ú= ê úë û

N
X

N
 (2)

Each column of the design matrix X in (2) contains r1 + r22 elements equal 
to +1, b1 – r1 + r12 elements equal to –1 and b2 – r2 elements equal to 0. Moreover, 
for X in the form (2), we have p = v, n = b1 + b2, m = b1 + r2.

The chemical balance weighing design in the form (2) is non‑singular if and 
only if the matrix X′G–1X is non‑singular. According to the form (1) of the ma‑
trix G, this condition is fulfilled if and only if X′X is non‑singular. From Ceranka, 
Graczyk (2018: 5), we have the following theorem.

Theorem 2. Any chemical balance weighing design X ∈ Ψn×p(–1, 0, 1) in the 
form (2) is non‑singular if and only if v ≠ 2k1 or k12 ≠ k22.
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Theorem 3. Any non‑singular chemical balance weighing design X ∈ Ψn×p(–1, 
0, 1) in the form (2) is regular D‑optimal if and only if:

a) ( )
( )

( )
( )

2
1 1 2 121 '

1 2

2 2
1 1p p p p

r b r r
b r

n
r

r
- - +

¢
-

= + - -
+ -

X G X I I 1 1 ,

b) =± - + - =± + + -( ) ( )1 1 2 12 n 1 1 2 122 2 1 X .'1 b 2 2 ppn r b r r r r r 1X'1

Proof. Let us first note that for the design matrix X ∈ Ψn×p(–1, 0, 1) in the form 
(2) ρ is expressed as

 
( )

( ) ( ) ( )( )
1 1 1 22 12
2

1 1 2 12 1 2 1 1 1 22 12

4

2 2 1 4

b r

r b r r b b b r

l l l
r

l l l

- - + -
=

- + - - + - - - + -
.

Taking into consideration the relations between the parameters of the balanced in‑
complete block design and the balanced bipartite weighing design, proof is com‑
pleted when we observe that the optimality conditions given in Theorem 1 deter‑
mine the forms of X′G–1X and X′1n as presented above. So, if these conditions are 
simultaneously fulfilled, then X ∈ Ψn×p(–1, 0, 1) is a regular D‑optimal chemical 
balance weighing design.

Theorem 4. If for a given ρ, the parameters of the balanced incomplete block 
designs are equal to ν = 4s + 1, b1 = 2(4s + 1), k1 = 2s, r1 = 4s, λ1 = 2s – 1, 4s + 1 
is a prime or a prime power, and the parameters of the balanced bipartite weigh‑
ing designs are equal to:
a) ρ = –(13s2 – 3s + 5)–1, ν = 4s + 1, b2 = s(4s + 1), r2 = 5s, k12 = 1, k22 = 4, λ12 = 2, 

λ22 = 3, s = 1, 2, …,
b) ρ = –3(13s2 + 23s + 7)–1, ν = 4s + 1, b2 = s(4s + 1), r2 = 5s, k12 = 2, k22 = 3, 

λ12 = 3, λ22 = 2, s = 2, 3, …,
c) ρ = –3(28s2 + 22s + 7)–1, ν = 4s + 1, b2 = 2s(4s + 1), r2 = 6s, k12 = 1, k22 = 2, 

λ12 = 2, λ22 = 1, s = 1, 2, …,
d) ρ = –3(40s2 + 14s + 7)–1, ν = 4s + 1, b2 = 2s(4s + 1), r2 = 12s, k12 = 2, k22 = 4, 

λ12 = 8, λ22 = 7, s = 2, 3, …,
e) ρ = –(44s2 – 14s + 5)–1, ν = 4s + 1, b2 = 2s(4s + 1), r2 = 14s, k12 = 2, k22 = 5, 

λ12 = 10, λ22 = 11, s = 1, 2, …,
f) ρ = –0.5(6s2 + 3s + 1)–1, ν = 4s + 1, b2 = 2s(4s + 1), r2 = 16s, k12 = 3, k22 = 5, 

λ12 = 15, λ22 = 13, s = 2, 3, …,
g) ρ = –(2(2st – 1)2 + 8s2t + 8s + 2st + 1)–1, ν = 4s + 1, b2 = 2st(4s + 1), r2 = 8st, 

k12 = 1, k22 = 3, λ12 = 3t, λ22 = 3t, s, t = 1, 2, …,
then X ∈ Ψn×p(–1, 0, 1) in the form (2) with the covariance matrix of errors σ2G, 
where G is of the form (1), is a regular D‑optimal design.

Proof. It is obvious that the parameters given above satisfy conditions (a)–(b) 
of Theorem 3.

http://www.czasopisma.uni.lodz.pl/foe/
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Theorem 5. If for a given ρ, the parameters of the balanced incomplete block 
and the balanced bipartite weighing designs are equal to:
1) ρ = –3(10s2 + 5s – 8)–1, ν = 2s, b1 = 2(2s – 1), r1 = 2s – 1, k1 = s, λ1 = s – 1 and 

ν = 2s, b2 =s(2s – 1), r2 = 3(2s – 1), k12 = 2, k22 = 4, λ12 = 8, λ22 = 7, s = 3, 4, …,
b) ρ = –4(180s2 + 12s – 11)–1, ν = 6s, b1 = 2(6s – 1), r1 = 6s – 1, k1 = 3s, λ1 = 3s 

– 1 and ν = 6s, b2 =6s(6s – 1), r2 = 3(6s – 1), k12 = 1, k22 = 2, λ12 = 4, λ22 = 2, 
s = 1, 2, …,

then X ∈ Ψn×p(–1, 0, 1) in the form (2) with the covariance matrix of errors σ2G, 
where G is of the form (1), is a regular D‑optimal design.

Proof. Clearly, the parameters given above satisfy conditions (a)–(b) of Theorem 3.
Theorem 6. If for a given ρ, the parameters of the balanced incomplete block 

designs are equal to ν = 4s2 – 1, b1 = 4s2 – 1, k1 = 2s2 – 1, r1 = 2s2 – 1, λ1 = 2s2 – 1 
and the parameters of the balanced bipartite weighing designs are equal to:
a) ρ = –(10s4 – 6s2 + 1)–1, ν = 4s2 – 1, b2 = (2s2 – 1)(4s2 – 1), r2 = 3(2s2 – 1), k12 = 1, 

k22 = 2, λ12 = 2, λ22 = 1,
b) ρ = –2(32s4 – 28s2 + 7)–1, ν = 4s2 – 1, b2 = (2s2 – 1)(4s2 – 1), r2 = 6(2s2 – 1), 

k12 = 2, k22 = 4, λ12 =8, λ22 = 7,
c) ρ = –3(40s4 – 30s2 + 6)–1, ν = 4s2 – 1, b2 = (2s2 – 1)(4s2 – 1), r2 = 8(2s2 – 1), 

k12 = 3, k22 = 5, λ12 = 15, λ22 = 13,
d) ρ = –(4t2(2s2 – 1)2 + t(2s2 – 1)(4s2 – 5))–1, ν = 4s2 – 1, b2 = t(2s2 – 1)(4s2 – 1), 

r2 = 4t(2s2 – 1), k12 = 1, k22 = 3, λ12 = 3t, λ22 = 3t, t = 1, 2, …,
s = 1, 2, … then X ∈ Ψn×p(–1, 0, 1) in the form (2) with the covariance matrix of er‑
rors σ2G, where G is of the form (1), is a regular D‑optimal design.

Proof. It is a simple matter to deduce that the parameters given above satisfy 
conditions (a)–(b) of Theorem 3.

Theorem 7. If for a given ρ, the parameters of the balanced incomplete block 
designs are equal to ν = 4s + 3, b1 = 4s + 3, r1 = 2s + 1, k1 = 2s + 1, λ1 = s, 4s+3 
is a prime or a prime power, and the parameters of the balanced bipartite weigh‑
ing designs are equal to:
a) ρ = –(10s2 + 14s + 5)–1, ν = 4s+3, b2 = (2s + 1)(4s + 3), r2 = 3(2s + 1), k12 = 1, 

k22 = 2, λ12 = 2, λ22 = 1,
b) ρ = –2(32s2 + 36s + 11)–1, ν = 4s + 3, b2 = (2s + 1)(4s + 3), r2 = 6(2s + 1), k12 = 2, 

k22 = 4, λ12 = 8, λ22 = 7,
c) ρ = –3(40s2 + 50s + 7)–1, ν = 4s + 3, b2 = (2s + 1)(4s + 3), r2 = 8(2s + 1), k12 = 3, 

k22 = 5, λ12 = 15, λ22 = 13,
d) ρ = –(4t2(2s + 1)2 + t(2s + 1)(4s – 1) + 4s + 3)–1, ν = 4s + 3, b2 = t(2s + 1)(4s + 3), 

r2 = 4t(2s + 1), k12 = 1, k22 = 3, λ12 = 3t, λ22 = 3t,
s, t = 1, 2, … then X ∈ Ψn×p(–1, 0, 1) in the form (2) with the covariance matrix 
of errors σ2G, where G is of the form (1), is a regular D‑optimal design.

Proof. One can easily check that the parameters (a)–(d) satisfy conditions  
(a)–(b) of Theorem 3.

http://www.czasopisma.uni.lodz.pl/foe/
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Theorem 8. If for a given ρ, the parameters of the balanced incomplete block 
designs are equal to ν = 8s + 7, b1 = 8s + 7, r1 = 4s + 3, k1 = 4s + 3, λ1 = 2s + 1, and 
the parameters of the balanced bipartite weighing designs are equal to:
a) ρ = –(2(2s + 1)2 + 4(s + 1)(8s + 7)–1)–1, ν = 8s + 7, b2 = (4s + 3)(8s + 7), 

r2 = 3(4s + 3), k12 = 1, k22 = 2, λ12 = 2, λ22 = 1,
b) ρ = –2(128s2 + 200s + 79)–1, ν = 8s + 7, b2 = (4s + 3)(8s + 7), r2 = 6(4s + 3), 

k12 = 2, k22 = 4, λ12 = 8, λ22 = 7,
c) ρ = –3(8(4s + 3)(2s + 1) + 12(s + 1)(8s + 7)–2)–1, ν = 8s + 7, b2 = (4s + 3)(8s + 7), 

r2 = 8(4s + 3), k12 = 3, k22 = 5, λ12 = 15, λ22 = 13,
d) ρ = –(4t2(4s + 3)2 + t(4s + 3)(8s + 3) + 8s + 7)–1, ν = 8s + 7, b2 = t(4s + 3)(8s + 7), 

r2 = 4t(4s + 3), k12 = 1, k22 = 3, λ12 = 3t, λ22 = 3t,
s, t = 1, 2, … then X ∈ Ψn×p(–1, 0, 1) in the form (2) with the covariance matrix 
of errors σ2G, where G is of the form (1), is a regular D‑optimal design.

Proof. It is evident that the parameters given above satisfy conditions (a)–(b) 
of Theorem 3.

4. Example

Here, we consider the experiment in which we determine unknown measurements 
of p = 5 objects using n = 20 measurements. We are interested in determining 
the design having the best statistical properties in the class X ∈ Ψ20×5(–1, 0, 1) for 
ρ = –1/19. In order to construct the design matrix of a regular D‑optimal chemical 
balance weighing design, we consider the balanced incomplete block design and 
the balanced bipartite weighing design given in Theorem 4(c). Let N1 and N2

* be the 
incidence matrices of appropriate designs with the parameters ν = 5, b1 = 1 r1 = 4, 
k1 = 2, λ1 + 1 and ν = 5, b2 = 10, r2 = 6, k12 = 1, k22 = 2, λ12 = 2, λ22 = 1:

 1

1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0

,0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

é ù
ê ú
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê ú
ê úë û

N

 

2 2 2 2 1 1

2 1 2 2 2 1

2 1 2 2 2 2 1

1 2 2 1 2 2

1 2 1 2 2 2

1 1 1 1 0 1 0 0 1 0
1 0 0 1 1 1 1 1 0 0

N = .1 1 0 0 1 0 0 1 1 1
0 1 1 0 0 1 1 1 0 1
0 0 1 1 1 0 1 0 1 1

*

ùé
úê
úê
úê
úê
úê
úê
úê
úê
úê ûë
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Here, 1q denotes the element belonging to the q‑th subblock, q = 1, 2. Thus design 
matrix of the regular D‑optimal chemical balance weighing design X ∈ Ψ20×5(–1, 
0, 1) is given in the form:

 
 0

  0   0
  0  0  0

 0  0
0 

0  0  0
0 0  0
0   0

 0
0  0

æ++---ççç+-+--çççç+--+-çççç+---+ççç-++--çççç-+---çççç-+--+ççç--++-çççç--+++çççç----+çç=çç++--ççç+ ++çççç+ -çççç+- +çççç +++-ççç-+çççç + +çççç -++ççç- +++ççç
--+è

X

ö÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷ç ÷ç ø

,

where “+” denotes the element equal to 1 and “–” denotes element the equal to –1.

5. Discussion

The principal significance of Theorems 3–8 is that they allow for widening the 
possible classes Ψn×p(–1, 0, 1) for any n and p in which a regular D‑optimal chem‑
ical balance weighing design exists. However, the conditions given in Theorem 3 
imply that for any class Ψn×p(–1, 0, 1) and for any given ρ we cannot construct 
a regular D‑optimal chemical balance weighing design. For example, in the class 
Ψ15×5(–1, 0, 1), we determine a regular D‑optimal chemical balance weighing de‑
sign for ρ = –1/10 (Ceranka, Graczyk, 2016: 78–82; Theorem 6 (iii)) and here for 
ρ = –1/51. Based on the same paper, we determine the optimal design for ρ = –1/120 
in the class Ψ120×15(–1, 0, 1), see Theorem 7 (ii). Besides, based on the presented 

http://www.czasopisma.uni.lodz.pl/foe/
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theoretical results, we set the optimal design for ρ = –1/992. Next, determining 
unknown measurements of p = 7 objects, we are able to use n = 35 measurements 
for ρ = –1/37, see Ceranka, Graczyk (2016: 82–83), Theorem 8 (ii). In addition, 
based on the results obtained above, we are able to use n = 28 measurements for 
ρ = –3/97. Summarising, we add new classes but the problem of determining an op‑
timal design in any class is still open and requires further study.
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Regularny D‑optymalny układ wagowy z ujemnie skorelowanymi błędami

Streszczenie: W artykule rozważa się problematykę dotyczącą istnienia regularnego D‑optymal‑
nego chemicznego układu wagowego przy założeniu, że błędy pomiarów są ujemnie skorelowane 
i mają takie same wariancje. Przedstawiono warunki konieczne i dostateczne, wyznaczające układ 
regularnie D‑optymalny oraz podano nowe metody konstrukcji. Są one oparte na macierzach incy‑
dencji układów zrównoważonych o blokach niekompletnych oraz dwudzielnych układów bloków.

Słowa kluczowe: dwudzielny układ bloków, chemiczny układ wagowy, układ optymalny, układ zrów‑
noważony o blokach niekompletnych
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