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Abstract: Granting a credit product has always been at the heart of banking. Simultaneously, banks
are obligated to assess the borrower’s credit risk. Apart from creditworthiness, to grant a credit prod-
uct, banks are using credit scoring more and more often. Scoring models, which are an essential part
of credit scoring, are being developed in order to select those clients who will repay their debt. For
lenders, high effectiveness of selection based on the scoring model is the primary attribute, so it is cru-
cial to gauge its statistical quality.

Several textbooks regarding assessing statistical quality of scoring models are available, there is how-
ever no full consistency between names and definitions of particular measures. In this article, the most
common statistical measures for assessing quality of scoring models, such as the pseudo Gini index,
Kolmogorov-Smirnov statistic, and concentration curve are reviewed and their statistical characteris-
tics are discussed. Furthermore, the author proposes the application of the well-known distribution
similarity index as a measure of discriminatory power of scoring models. The author also attempts
to standardise names and formulas for particular measures in order to finally contrast them in a com-
parative analysis of credit scoring models.
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1. Introduction

Very rapid evolution of technology in recent years has meant that collection and
processing of large volume datasets at a very low aggregation level has become
available even for small companies. By means of statistical methods, these com-
panies can derive valuable information from the data and be more competitive,
make better decisions and reduce costs. In the banking sector, lenders may want
to know if a given borrower will repay his or her debt. The answer to that is credit
scoring which allows them to assess the borrower’s risk. Credit scoring is simply
“the use of statistical models to transform relevant data into numerical measures
that guide credit decisions” (Anderson, 2007: 6). These numerical measures are
called scores and they rank clients with respect to their credit risk. As for statis-
tical models, it seems that logistic regression is the most widely used method for
modelling credit risk. A number of various techniques, such as linear regression,
discriminant analysis, mathematical programming, neutral networks, or decision
trees, are also available.

By means of credit scoring, lenders can grant credit to new applicants or ex-
isting clients (cross-sell) and expand their business much more. Moreover, credit
scoring is used to calculate the PD parameter which is an important part of cal-
culating capital requirements in the advanced internal ratings-based approach.

When developing a scoring model (also known as a scorecard), it is crucial
to evaluate its statistical quality. In other words, one needs to know how good
a scoring model really is in a sense of its performance which is represented by its
discriminatory power (i.e. the ability to distinguish those clients who will repay
their debt and those who will not repay it). To measure that, there are several meth-
ods used in order to evaluate the performance of the scorecard and compare alter-
native models at the stage of the developing process or to evaluate performance
of the scorecard as a part of its maintaining process.

Despite its relatively short history (dating back roughly to the 1950s), credit
scoring has rapidly expanded in the field of finance during the last few decades
(Abdou, Pointon, 2011). There exist a few books where statistical measures for as-
sessing scoring models quality can be found (see Anderson, 2007; Crook et al.,
2007; Finlay, 2010; Rezac, Kolacek, 2012; Siddiqi, 2017), but there are differenc-
es in names or symbols for particular statistics (such as the Kolmogorov-Smirnov
statistic) to deal with. Names for particular curves also differ across publications
(e.g.: the concentration curve). Moreover, these curves often vary in axes, so they
are not equivalent (see: the Lorenz curve in Siddiqi, 2017).

The purpose of this paper is to review the most widely used statistical methods
for gauging quality of a scoring model, standardise the above-mentioned differ-
ences in names and definitions of particular measures and discuss their main char-
acteristics. Special attention has been paid to the measures related to the Lorenz
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curve and the Gini index. In addition, it is discussed what features are important
in the process of developing a scoring model. In section 2, logistic regression
is introduced as the most common approach to modelling credit risk. The next
two paragraphs focus on graphical (section 3) and numerical (section 4) methods
for assessing quality of a scoring model. These sections contain typical measures
of discriminatory power of scoring models where the pseudo Gini index, Kolmog-
orov-Smirnov statistic, divergence and other methods are pointed out. In section 5,
a case study based on a comparison of three scoring models is conducted.

2. Assessing the discriminatory power

First of all, it is crucial to outline what is actually modelled. Lenders are interested
in the identification of those clients who will repay their debt and those who will
not (a state called default). Let Y be the Bernoulli random variable that can take
one of two values for each (k= 1, ..., K) observation:

(1

¥ = 1, when default occurs
ke 0, otherwise.

The final scorecard will vary across a given default definition, so it is very
important to be cautious when setting the dependent variable Y. In practice, the
definition depends on the days past due (DPD) and the amount past due. That be-
ing said, a client is marked as “bad” (default occurred) when the DPD and the
amount past due exceed a given threshold at a given time horizon, otherwise he/
she is marked as “good” (non-default).

Logistic regression, which is the most common technique to assess client cred-
it risk, is given by equation (Hosmer, Lemeshow, Sturdivant, 2013):

Logit(p, )= 0, + @" x,, (2)

where:

Pr
1-p,
p, 1s the probability that the case k is a good client, i.e. p, (Y, = 0),

B, is an intercept and B is a vector of estimated parameters,
x, is a vector of explanatory variables with values for the case .

Developing a scoring model, one has to keep in mind two main properties:
discriminatory power (the ability of the model to distinguish good and bad clients)
and accuracy (the ability of the model to predict default probabilities of clients).

Logit(p,)=1In is the natural logarithm of odds ratio also called score and
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The first stands for the degree of ranking ability, while the latter focuses on the
model fitting to observed values of dependent variable. For lenders, power is
the primary attribute, i.e. distinguishing good and bad clients, whereas accuracy
may be secondary, and it can be attained through calibration (see: Anderson, 2007).
Measuring power and accuracy should be part of any developing and maintaining
process of a credit scoring model.

3. Graphical methods for assessing quality
of scoring models

Lorenz and concentration curves

The Lorenz curves and concentration curves are widely used tools for the anal-
ysis of economic inequality and redistribution. The Lorenz curve (LC) was
first introduced by Lorenz (1905) as a method of measuring the concentration
of wealth. Let Y be a non-negative random variable, f(y) its probability densi-
ty function and F(y) the cumulative distribution function of ¥. Moreover, let
0,(p)=F,'(p)=inf{y| F,(y)> p}, p & (0;1) denote the quantile function (the in-
verse cumulative distribution function). The Lorenz function can be given by the
following formula (see e.g.: Cowell, 2000):

0,(p)
i mpdey (»)

L (p)=d=="— """
) [ var,(»)

3)

The above-mentioned formula can be applied when the theoretical probability
distribution of Y is known and can be estimated from the data. In practice, we usu-
ally obtain the Lorenz curve directly using the finite population form of L (p)
which is given as:

_ Yy rly <
iy Sl <o)
Zi:l‘y[

with /{.} as an indicator function being equal to 1 if “” is true and 0 otherwise.

The Lorenz function of the variable Y refers to cumulative outcome propor-
tions of population members ranked by the values of the same variable Y. Using
another ranking variable X, while still measuring the outcome in terms of Y, leads
to the so-called concentration curve (see e.g.: Cowell, 2000) which is often wrong-
ly called the Lorenz curve.

(4)
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Ly, (p) f iip)f i}fn (xy)dydx
xv \P)=

[ yar ()

where: £ (x, y) is the density of the joint distribution of X and Y (see e.g.: Bishop,
Chow, Formby, 1994). For the finite population of size , formula (4) can be sim-
plified to:

: (5)

l-]ilyil{xi <Oy (p)}
Z:'N:lyi ‘

In the credit scoring context, the empirical concentration curve given by for-
mula (6) is applied with the scores S playing the role of the ranking variable X, while
the variable of interest Y is binary (bad or good client). The graphical presentation
of (6) takes the form of a plot with the empirical cumulative distribution function
(ECDF) of bad clients F, (s) on the horizontal axis and the empirical cumulative
distribution function of good clients F,, _(s) on the vertical axis (see e.g.: Rezac,
Kolacek, 2012). It is used to present the discrimination power of a given scoring
model at any score value (Figure 1).

Ly (p)= (6)
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Figure 1. Concentration curve
Source: own elaboration

By means of the Lorenz and related curves, one can analyse the performance
of scoring models at any value of the score. The diagonal line shows the perfor-
mance of a random model (the model which randomly assigns score to good and
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bad clients); on the other hand, an ideal model assigns higher score values only
to good clients (perfect separation between distributions of good and bad clients).
In practice, the lower or upper values of the score are often investigated where
a threshold (a particular value of the score below which all clients are classified
as bad clients) is expected, e.g.: if 50% of bad clients is rejected, also roughly 10%
of good clients is rejected at a given score value (see: point C in Figure 1).

The same curve, but with a reversed axis, called the Receiver Operating Char-
acteristic (ROC), one can find in Anderson (2007), Finlay (2010), Hosmer, Leme-
show, Sturdivant (2013), Siddiqi (2017).

Cumulative Accuracy Profile
Another graphical way to assess quality of a scoring model is the Cumulative Ac-
curacy Profile (CAP). This figure contains the cumulative distribution function
of all clients on the horizontal axis and the cumulative distribution function of bad
clients on the vertical axis. The CAP curve easily shows repercussions of rejecting
the proportion of bad clients in terms of rejecting all clients (at any score value).
An example of Cumulative Accuracy Profile is presented in Figure 2.
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Figure 2. CAP curve

Source: own elaboration

A random model means that the model randomly assigns score to good and
bad clients. The curve for an ideal model goes from point (0,0) through point (w,1)
to point (1,1), where w, is the fraction of all bad clients. The closer the CAP curve
(for a given model) is to those for the ideal model, the better the scoring model is.
Considering point C (0.1,0.46) as the threshold value, we reject 10% population
and also get rid of 46% of bad clients.
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Fish-eye graph

The fish-eye graph (also called the D curve) is a convenient method for investi-
gating quality of a scoring model. It consists of plotting the empirical cumulative
distribution function (ECDF) for both good and bad clients with respect to the
score value. By means of the Fish-eye graph, one can analyse disproportions be-
tween fractions of good and bad clients. The greater the disproportions, the bet-
ter the scoring model is. In fact, this method is connected with D statistic, which
is defined as the maximum difference between empirical cumulative distributions
(see: section 4).
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Figure 3. Fish-eye graph

Source: own elaboration

For the score that holds the maximum absolute value we have got the greatest
disproportion between the fraction of bad and good clients. For example, at the
score equal to 2 or smaller, there is a subset of population which consists of 81%
of the empirical distribution of bad clients and 40% of the empirical distribution
of good clients (Figure 3).
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4. Numerical characteristics for assessing quality
of scoring models

Gini index and related measures

The popular Gini index of inequality (Gini, 1912; 1914) was first proposed in 1912
but it became known after the publication from 1914 indicating the relation with
the Lorenz curve. The Gini index can be described by several mathematical rep-
resentations — each of them can be given its own interpretation and naturally leads
to different estimator formulas. Among these formulas, the most popular is the ge-
ometric approach based on the Lorenz function (3) where the Gini index is defined
as double the area between this function and the diagonal called the /ine of equal
shares, as described in Figure 1:

A
G=——=24=1-2B,
A+ B (7

where: A4 is the area between the diagonal and Lorenz curve and B stands for the
area under the Lorenz curve.

Another popular representation of the Gini index, proposed by Gini in 1912,
is based on the absolute mean difference A, known as the Gini mean difference
(GMD). This measure is a result of dividing the value of the absolute mean differ-
ence by the doubled expected value of Y:

A
G—Z, ()

where A = E'|Y, — Y| is the expected value of the differences between the random
variables Y, and Y, which come from the same distribution and represents varia-
bility of Y. The formula (8) enables the interpretation of the Gini index in terms
of relative variability so it represents the so-called statistical approach.

When the form of the theoretical distribution of the random variable Y
is known, we can utilise formulas (7) and (8) to determine the parametric esti-
mates of the Gini index, as is usually the case in income studies. When we want
to evaluate the Gini index directly from the data, we can apply several finite pop-
ulation representations of the Gini index (Jedrzejczak, 2010). In particular, for-
mula (8) takes the form:

G %Zi]Zlin _yl'|

2 )
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One can equivalently apply the following formula based on cumulative dis-
tributions functions:

GZT yF(y)dﬁ(y)—l, (10)

where F (y) is the empirical cumulative distribution function and # is the mean
for the empirical values of the random variable Y. It is worth noting that formula
(9) can lead to numerous problems when dealing with large datasets, especially
in credit scoring where there are at least thousands of observations, while the re-
sults obtained by means of formula (10) can be ambiguous and lead to different
values, depending on whether ECDF(y) is left or right continuous. One solution for
that is data aggregation, though it usually leads to underestimating the true value
of Gini index (Gastwirth, 1972).

To handle that, one may transform geometric formula (7) for the empirical
values of the random variable Y, incorporating the so-called trapezium rule:

G=1-3((F-F )x(L+L,), (an

where:
F is the cumulative distribution function of ¥,
L, is the value of the Lorenz curve for the i-th observation.

For purposes of gauging the discriminatory power of a scoring model, one can
apply a modification of the Gini inequality index called the concentration index
or pseudo Gini index (also called the Gini, Gini statistic, Gini index, Gini coeffi-
cient, see: Siddiqi, 2017; Finlay, 2010). It is based, contrary to the classical Gini in-
dex, on the concentration curve given by (4) and (5). It can be calculated from the
data using the modification of formula (10) called the Brown formula (Finlay, 2010):

G=1->

i=

N
(FBadl (S)_FBad, ‘ (S)) X(FGood, (S)+FGood, ‘ (s))}, (12)
2
where:
Fy,q (s) —is the empirical cumulative distribution function of bad clients’ scores
for the i-th observation,
Fiypq (s) —is the empirical cumulative distribution function of good clients’ scores
for the i-th observation.
The pseudo Gini index is very widely used to evaluate the discriminatory
power of a scoring model. The classical Gini index measures the degree of ine-
quality and takes values from <0; 1>, whereas the pseudo Gini index takes values

from <-1; 1> and measures the concentration of good and bad clients, moreover,
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it gauges the direction of the relationship between scores and the dependent varia-
ble. Positive values mean that there is a positive relationship between the score and
the dependent variable (the higher the score, the better the client), negative values
mean that there is a negative relationship (the lower the score, the better the client),
and value 0 means the model randomly assigns the score to the predicted variable.
Absolute value 1 means an ideal model (the case when the distributions of good
and bad clients are perfectly separated). The pseudo Gini index is connected with
c statistics by the following relation:

1+ Gini
= (13)

where (13) is treated as the probability that a randomly selected observation from
the distribution of bad clients has the score lower than a randomly selected obser-
vation marked as a good one:

c=P(s,>s,|Y,=0NY,=1), (14)

The minimum value of ¢ equals 0.5, which means that the model randomly
assigns scores to clients, on the other hand, the maximum value 1 means a perfect
separation of good and bad observations.

In fact, the pseudo Gini index defined by formula (12) is a special case
of Somers’ D statistics with a discrete variable (Newson, 2006; Thomas, 2009).
Moreover, there is a measure called the Accuracy Rate which is always equal
to the value of the pseudo Gini for any scoring model.

The Accuracy Rate (4R) is a measure based on the CAP curve and it is calcu-
lated as:

A A

AR = =
ALB  05x(1—w, ) (15)

where:

A is the area between the CAP curve and the diagonal,

B is the area between the ideal model’s CAP and the diagonal,
w, is the fraction of all bad clients in the population of all clients.

Kolmogorov-Smirnov statistic

A measure of separation frequently used in the USA is the well-known Kolmog-
orov-Smirnov (D) statistic (Kolmogorov, 1933; Smirnov, 1936), which was orig-
inally proposed as a consistency test (see: e.g.: Domanski, 1979). The Kolmogor-
ov-Smirnov test is based on the comparison of empirical and theoretical cumulative
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distribution functions and verifies the hypothesis if a sample comes from a popu-
lation with a specific (continuous) distribution, i.e.:

H,:F(x)=F(x)

. (16)
HI:F(x)iF (x)

where: F(x) is the empirical distribution function based on the sample, F"(x) is the
theoretical cumulative distribution function with known parameters. The D, test
statistic is defined as (Domanski, 1979):

D, = max|F* (x)—F(x)

; (17)

which is the maximum absolute difference between the empirical cumulative dis-
tribution function estimated on a random sample and the theoretical cumulative
distribution function.

The D, test applied in credit scoring is a statistic defined as the maximum
difference between the cumulative distribution function of bad clients and the cu-
mulative distribution of good clients:

D, = max|FBad (S)—F(;ood (S)| . (18)

Firstly, the main disadvantage of D statistic is that it often chooses the score
value that is too high or too low (usually D, is obtained somewhere in the mid-
dle of the score range) for the scorecard threshold. Secondly, D, statistic only tells
us the maximum disproportion between the fractions of good and bad clients
at some score value, hence it quite poorly describes quality of a scoring model
as a whole. Thus, it is important to analyse the fish-eye graph and D statistic to-
gether and use them in conjunction with other measures as well.

Divergence

Divergence is a simple measure of separation of two groups. The measure can
be easily obtained as the squared difference between the average scores of good
and bad clients divided by their average variance (Siddiqi, 2017):

(TFGood - 7T/S’azd )2

2 j—
v (U(Z?aad +‘7c2;ood)/2 '

(19)

Divergence is a parametric statistic which assumes that scores are normally
distributed — this is an important limitation in the context of applicability because
in practice the distribution of scores can often differ from the normal distribution.
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Lift

Lift is a useful measure to assess the predictive power of a scorecard in each score
interval. One can gauge how a model performs in a chosen range of the score
—in a particular range where a threshold value is expected. Lift is defined as the
ratio of the cumulative distribution function of bad clients and the cumulative dis-
tribution function of all clients (Rezac, Kolacek, 2012):

 Fuy (a)

Lifi(a)= . (20)

The presented measure indicates the number of times that the considered scor-
ing model is better than the random model in a range of the score [s_. ; a]. Intui-
tively the higher the value of Lift, the better the scoring model is. Value 1 corre-
sponds to a random model.

Distribution similarity index

The distribution similarity index (SI) was first proposed by the Polish statistician
Egon Vielrose (1960) and has been well-known in economic research since then,
especially in the field of income distribution analysis. This technique can also
be applied to the evaluation of credit scoring systems and is described by the fol-
lowing equation (Domanski, 2001):

K
S ="y "min(w,,w,) | Q1)

i=1

where:

i

Wy = 5 is the fraction of bad observations in the i-th score interval in the total

i

number of bad observations,
8 . . . . . . .
Wei = E is the fraction of good observations in the i-th score interval in the total

number of bad observations, min(.) is a function which returns the smallest value
from two arguments. The SI takes values from 0 to 1, where 0 means that the dis-
tributions are disjoint (perfect situation) and 1 means that structures of considered
distributions are the same (random assignment of scores to clients). Obviously, the
smaller the value of SI, the better the scoring model is.
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5. Case study

As the illustration of the behaviour of the methods mentioned above, we investi-
gate the quality of three different scoring models which can be applied to the same
group of clients. Compared scorecards were developed to distinguish clients who
are likely to repay their debts and those who are not. Basic information about the
scorecards' is given in Table 1.

Table 1. Models comparison — basic statistics

Model I Model IT Model II1
Number of predictors” 6 6 7
Min. score -9.22 —10.44 -9.78
Avg. score 7.90 7.45 7.77
Max. score 11.45 9.24 10.34

* All of the estimated parameters are significant at 5% level.

Source: own calculations

The performance of these models has been examined on the basis of a dataset
which consists of 5000 credit clients (non-mortgage loans) and 300 of them were
bad clients’. In Table 2, the pseudo Gini index, D, statistic, Divergence and Sim-
ilarity Index (SI) for each scoring model have been presented.

Table 2. Pseudo Gini, D , Divergence and SI statistics

Model T Model 11 Model 11T
Pseudo Gini 74.53% 73.26% 68.20%
D, 61.55% 60.38% 53.09%
Divergence 2.58 241 1.95
SI 0.39 0.40 0.48

Source: own calculations

All of the computed global statistics outlined in Table 2 show that Model I has
the highest discriminatory power, but Model 11 is almost as good as Model 1. On the
other hand, Model 11 seems to have the lowest discriminatory power. Given these
measures, one can say that Model I performs only slightly better than Model 11, but
all of these values are at an acceptable level. According to the pseudo Gini index
(74.53% vs 73.26%), D, statistic (61.55% vs 60.38%), Divergence (2.58 vs 2.41) and

1 Due to privacy policy, the structures of the models are not provided. All of the scorecards are
acceptable from the statistical point of view (i.e. assumptions, the significance of the estimat-
ed parameters).

2 Aclient was marked as bad when the days past due and the amount past due exceeded 90 days
and 120 EUR respectively.
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Similarity Index (0.39 vs 0.40), both models have similar discriminatory power.
Because the pseudo Gini and the other measures cannot recognise a model which
is significantly better than its competitors, further examination is necessary.

By means of Lift (eq. 20), it is possible to investigate performance of the mod-
els in particular score intervals, obtained by dividing all clients into decile groups
(see Table 3).

Table 3. Lift values

Decile Obs’ Model I Model IT Model ITI
Bad obs™ | LIFT Bad obs LIFT Bad obs LIFT

1 500 125 4.17 180 6.00 134 447
2 500 92 3.62 48 3.80 69 3.38
3 500 44 2.90 19 2.74 35 2.64
4 500 23 2.37 15 2.18 22 2.17
5 500 13 1.98 7 1.79 16 1.84
6 500 2 1.66 11 1.56 9 1.58
7 500 1 1.43 10 1.38 9 1.40
8 500 0 1.25 5 1.23 3 1.24
9 500 0 1.11 1 1.10 1 1.10
10 500 0 1.00 4 1.00 2 1.00

ALL 5000 300 300 300

“The number of clients in each decile.
“The number of clients marked as bad in each decile.

Source: own calculations

It turns out that values of Lift differ across given models, especially in the
first decile group, in favour of Model II and Model I11. Model I is roughly 4 times
better than a random model, whereas Models II and III are 6 times and roughly
4.5 times better than random selection, respectively. In this case, the maximum
value of Lift would be equal to 10, hence Model II performs much better than the
remaining ones in lower score intervals (the first and second decile).

Analysing the CAP curve (Figure 4), one can say that Model I performs better
in higher values of scores (better separates the best clients from good clients) and Mod-
el II performs better in lower values of scores (better separates the worst clients from
bad clients), whereas Model 111 seems more balanced (separates the best clients from
good clients and the worst clients from bad clients with similar discriminatory power).

Discriminatory power can also be visualised by plotting concentration curves
for each model. Curves show concentration of bad and good observation across
all possible score values (see Figure 5). On the basis of the concentration curves
(Figure 5), it can be noted that Model II is much better than Model I and Mod-
el I1I in lower score values, where a threshold is usually expected. For example,
setting the threshold at a particular score value, for Model I, 60% of bad clients
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is rejected and also 12.4% of good clients is rejected (see: point B in Figure 5), for
Model IT 60% of bad clients is rejected and also 6.8% of good clients is rejected
(see: point A in Figure 5) and for Model 111 60% of bad clients is rejected and also
13.6% (see: point C in Figure 5) of good clients is rejected.
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Figure 4. CAP curves for Model I, Model Il and Model Ill

Source: own elaboration
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To sum up, all presented graphical methods and numerical characteristics for
assessing quality of a scoring model lead to a particular choice which is Model II.
Despite similar quality of the models based on global measures (taking into ac-
count all possible score values, see: Table 2), it has turned out that they perform
quite differently in particular ranges of scores. In this case, the second model is the
most reasonable for lenders in terms of quality due to its high discriminatory power
in the lower range of the score where a threshold value is often expected to be set.

6. Conclusions

In a rapidly changing economic environment, rich in large volume data available
at a low aggregation level, it becomes crucial for lenders to extract information
about their customers in order to explore the market, make smart decisions and
manage credit risk properly. These activities can be facilitated by the use of scor-
ing models which produce scores based on consumer credit data. Scores are meas-
ures which rank clients with respect to their credit risk. The ability to gauge qual-
ity of a scoring model plays a key role in its developing or maintaining processes.

In this article, the most common methods (such as the pseudo Gini index, Kol-
mogorov-Smirnov statistic) for measuring quality of a scoring model were pre-
sented, simultaneously the author standardises the names of these methods (e.g.:
the pseudo Gini index, concentration curve). It turns out that particular measures
are named in various ways (often incorrectly), probably due to high contribution
of practitioners in the development of credit scoring. Also, a case study was con-
ducted which contained application of statistical measures for assessing quality
of a scoring model in comparison analysis between three scoring models. It was
shown that global measures should be analysed in conjunction with the local meas-
ure called Lift and graphs such as the concentration curve and Cumulative Accu-
racy Profile (CAP), especially when at first glance the models are not essentially
different.
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Uwagi na temat statystycznych miar oceny jakosci modelu scoringowego

Streszczenie: Jednym z podstawowych zadarn bankéw jest udzielanie kredytow i pozyczek pie-
nieznych. Z punktu widzenia kredytodawcy w procesie kredytowaniem niezwykle istotna jest oce-
na ryzyka zaniechania pfatnosci zobowigzan potencjalnego kredytobiorcy. W celu selekcji klientow,
obok oceny ich zdolnosci kredytowej, coraz czesciej wykorzystuje sie modele scoringowe wchodzace
w sktad metodologii tzw. scoringu kredytowego (creditscoring). W podejsciu tym z punktu widzenia
kredytodawcy kluczowa jest jakos¢ doboru jednostek, ktérym kredyt zostanie przyznany. To, czy kla-
syfikacja dokonywana na podstawie modelu scoringowego jest dobra, moze by¢ opisane za pomo-
Cq statystycznych miar oceny jakosci.

Mimo coraz wiekszej popularnosci metod scoringowych w praktyce gospodarczej literatura dotyczaca
statystycznych metod oceny ich jakosci jest w dalszym ciggu stosunkowo uboga. Ponadto w publika-
cjach na ten temat czesto wystepuja rozbieznosci w zakresie nazewnictwa oraz konstrukgji poszcze-
golnych miar. W artykule przedstawiono charakterystyke najczesciej stosowanych statystycznych miar
oceny jakosci modelu scoringowego (m.in. indeksu pseudo Giniego, statystyki Kolmogorova-Smir-
nova, krzywej koncentracji), a takze podjeto prébe standaryzacji nazewnictwa oraz postaci samych
miar jakosci modelu scoringowego. Ponadto przedstawione zostato studium przypadku, w ktérym
dokonano analizy poréwnawczej trzech modeli scoringowych w kontekscie ich jakosci klasyfikacyjnej.

Stowa kluczowe: scoring kredytowy, jakos¢ modelu scoringowego, krzywa Lorenza, krzywa kon-
centracji, wspodtczynnik Giniego
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