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Abstract: The assessment of dependence between time series is a common dilemma, which is often 
solved by the use of the Pearson’s correlation coefficient. Unfortunately, sometimes, the results may 
be highly misleading. In this paper, an alternative measure is presented. It is based on hidden Markov 
models and Viterbi paths. The proposed method is in no way universal but seems to provide quite 
an accurate image of the similarities between time series, by disclosing the periods of convergence 
and divergence. The usefulness of this new measure is verified by specially crafted examples and re‑
al‑life macroeconomic data. There are some definite advantages to this method: the weak assump‑
tions of applicability, ease of interpretation of the results, possibility of easy generalization, and high 
effectiveness in assessing the dependence of different time series of an economic nature. It should 
not be treated as a substitute for the Pearson’s correlation, but rather as a complementary method 
of dependence measure.
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1. Introduction

The concept of measuring dependence between variables is, without a doubt, one 
of the most important problems in modern theory. Similarity measures are also 
crucial parts of many applications in time series data mining, e.g. clustering and 
classification. Over the years several approaches have been proposed. Despite the 
existence of methods dedicated to time series analysis, like cointegration or cop‑
ulas, the most known and used method of accessing the relationship between two 
time series is definitely Pearson’s correlation coefficient, which, in fact, has a much 
more general use. However, there are well known theoretical cases, where corre‑
lation is not a good measure of dependence. It turns out, that in economic practice 
exploring correlation may be quite misleading.

The purpose of this paper is to present an alternative to the existing meas‑
ures of dependence between time series. This measure, in some cases, seems 
to be a better reflection of dependence when compared to the Pearson’s correlation 
coefficient. It also requires much weaker assumptions than common econometric 
or statistic methods for time series analysis. The proposed method employs hid‑
den Markov models (HMM) and Viterbi paths. These tools are widely used in the 
areas, where the pattern recognition is explored. They may also be used to find 
similarities between time series, and therefore, in some cases, may give more ac‑
curate results than the Pearson’s correlation coefficient. This may be especially 
useful for non‑linear data. What is more, this approach allows for the specifica‑
tion of periods of convergence and divergence between the data. The effectiveness 
of the method was verified based on specially prepared test data, but most of all, 
based on the exemplary data from the Central Statistical Office of Poland. There 
is, however, no comparison of effectiveness given between the proposed method 
and other existing approaches dedicated to time series relationship analysis. The 
main goal of this paper is to give a detailed description of the method and to pres‑
ent it as a comparison to the most popular measure, that is the Pearson’s correla‑
tion coefficient.

This paper consists of 6 sections. After the introduction, in section 2, some 
common dependence measures are briefly presented, with the emphasis on pros 
and cons of the Pearson’s correlation coefficient. Section 3 discusses the key tools 
in the formulation of the new dependence measure, that is: the hidden Markov 
models and Viterbi paths. Section 4 contains a detailed description of the new de‑
pendence measure, which is complemented by examples in section 5. The article 
ends with the conclusion in Section 6.
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2. Time series similarity measures

Various ways of assessing the dependence exist and are used in data analysis. 
There is no simple classification of available methods, but some effort has been 
made to unify the comparison methods (Parzen, Mukhopadhyay, 2012). Some 
of the measures, such as correlation coefficients, have been well known for over 
a half of a century (Kendall, Stuart, 1973; Soper et al., 1917), some, such as dis‑
tance correlation (Székely, Rizzo, Bakirov, 2007) or local Gaussian correlation 
function (Tjostheim, Hufthammer, 2013), are relatively new. Many time series 
applications are related to the similarity search and exploit methods such as dis‑
crete Fourier transform or wavelet transform (Wu, Agrawal, Abbadi, 2000). The 
best known similarity measures dedicated only to time series, are the cointegra‑
tion method and copulas. A comprehensive introduction to copula theory and de‑
pendence modeling can be found in books of Joe (1997) and Nelsen (2006). The 
theory and discussion of the time series cointegration can be found in Dhrymes 
(1997) or Maddala and Kim (1998).

An extensive comparison of similarity measures for time series classification 
can be found in Lhermitte et al. (2011) or Serrà and Arcos (2014). The compari‑
sons include similarity measures such as distance measures (Euclidean, Manhat‑
tan, Mahalanobis), correlation based measures, dynamic time warping, Fourier 
based similarities, and principal component analysis.

Nevertheless, the best‑known method of measuring the dependence is defi‑
nitely a classic Pearson’s correlation. It was introduced by Francis Galton and Karl 
Pearson (1895) at the end of the 19th century. It is a simple measure of the linear 
correlation between two variables, denoted usually2 by the letter r, and given by the 
formula for the n‑element dataset 

Many time series applications are related to the similarity search and exploit methods such as 
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measures such as distance measures (Euclidean, Manhattan, Mahalanobis), correlation based 
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Pearson’s correlation. It was introduced by Francis Galton and Karl Pearson (1895) at the end 

of the 19th century. It is a simple measure of the linear correlation between two variables, 

denoted usually2 by the letter r, and given by the formula for the n-element dataset 

{(𝑥𝑥1, 𝑦𝑦1), (𝑥𝑥2, 𝑦𝑦2), … , (𝑥𝑥𝑛𝑛, 𝑦𝑦𝑛𝑛)}, 

 𝑟𝑟 = ∑ (𝑥𝑥𝑖𝑖−𝑥̅𝑥)(𝑦𝑦𝑖𝑖−𝑦̅𝑦)𝑛𝑛
𝑖𝑖=1

√∑ (𝑥𝑥𝑖𝑖−𝑥̅𝑥)2𝑛𝑛
𝑖𝑖=1 √∑ (𝑦𝑦𝑖𝑖−𝑦̅𝑦)2𝑛𝑛

𝑖𝑖=1
, (1) 

where 𝑥̅𝑥 = 1
𝑛𝑛 ∑ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1  and 𝑦̅𝑦 = 1
𝑛𝑛 ∑ 𝑦𝑦𝑖𝑖𝑛𝑛

𝑖𝑖=1  are the sample means. 

The Pearson’s correlation coefficient ranges from −1 to 1. Values –1 and 1 suggest a perfect 

linear relationship, whereas values close to zero imply that there is no linear relationship 

between the variables. There exist some arbitrary rules or guidelines for the interpretation of a 

correlation coefficient (Guilford, 1956), however, the interpretation always depends on the 

context and can’t be generalized to all applications. 

Although the Pearson’s correlation coefficient is widely used in the sciences, it has some 

drawbacks. Most importantly, it was developed only to assess the degree of linear relationship. 

One of the other disadvantages is its sensitivity to outliers. For example, in Figure 1, there are 

two time series with perfect positive correlation (parallel lines) at all times except the last three 

points. Pearson’s correlation coefficient for these sample datasets equals 0.6951. The 
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or guidelines for the interpretation of a correlation coefficient (Guilford, 1956), 
however, the interpretation always depends on the context and can’t be general‑
ized to all applications.

2  Sometimes the name sample Pearson correlation coefficient is used. For the populations, 
Pearson’s correlation coefficient is represented by the letter ρ.
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Although the Pearson’s correlation coefficient is widely used in the sciences, 
it has some drawbacks. Most importantly, it was developed only to assess the de‑
gree of linear relationship. One of the other disadvantages is its sensitivity to outli‑
ers. For example, in Figure 1, there are two time series with perfect positive corre‑
lation (parallel lines) at all times except the last three points. Pearson’s correlation 
coefficient for these sample datasets equals 0.6951. The interpretation could imply 
that the two corresponding datasets are not so similar after all, whereas there are 
only 3 out of 50 points causing discrepancies.
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Figure 1. Example of the influence of outliers on the value of the Person’s correlation coefficient.  
For exemplary datasets r = 0.6951

Source: own calculations

Having considered presented arguments and examples, one must agree that 
correlation, Pearson’s in particular, is not a good measure of dependence in some 
cases. In economic practice, drawing conclusions based on this correlation coef‑
ficient may be highly misleading. Therefore, it is important to develop alternative 
dependence measures, which is the main goal of this paper. It must be emphasized 
that the Pearson’s correlation coefficient is designed to measure the correlation be‑
tween the variables, not the time series. One of the key features is the immutabili‑
ty for the permutation of elements. In contrast, the method proposed in this paper 
is dedicated to the time series only.
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3. Hidden Markov models and Viterbi path

In this section, a brief introduction to the theory of hidden Markov models (HMM) 
is presented. Combined with the concept of a Viterbi path, HMMs are the basis 
of the new measure, described in the next section.

The HMMs are present in the literature at least since the 1960s of the previous 
century but are usually identified with the name of Hamilton (1989). Hidden Mark‑
ov models are the generalization of the Markov models (Cappé, Moulines, Rydén, 
2005) achieved by an addition of an extra layer. Formally, HMM {Xk, Yk}k≥0 is a dis‑
crete stochastic process satisfying the following conditions:
1)	 the unobservable process {Xt}t≥0 is a homogenous MC with a finite state space S,
2)	 conditionally on the process {Xt}t≥0 the observations {Yt}t≥0 are independent, 

and for each t the conditional distribution of Yt depends only on Xt.
In macroeconomic applications, the normal HMM is often used, which refers 

to the case where Yt has a Gaussian distribution. HMM are widely used in the are‑
as, where the pattern recognition is explored, such as speech, handwriting, gesture 
or voice recognition. HMM is also used in bioinformatics (e.g. DNA sequencing 
process) or macroeconomics (e.g. business cycles synchronization analysis, turn‑
ing points identification).

In HMM the states are unobservable, and a few algorithms for calculating 
them exist. All of them are based on another observable time series, to be more 
precise, on the estimated transition probabilities and the parameters of the proba‑
bility distribution related to each state. Estimation of the HMM parameters may 
be done with the use of the Baum‑Welch algorithm (Baum et al., 1970), whereas 
to find the most probable path of states, the concept of smoothed or filtered proba‑
bilities can be exploited. Sometimes, the path of states may be optimal only locally, 
therefore it is advisable to use a more effective approach called Viterbi algorithm 
(Viterbi, 1967), which takes under consideration the whole period covered by the 
analysis. To be more formal, the Viterbi path is the path of states 

of an extra layer. Formally, HMM {𝑋𝑋𝑘𝑘, 𝑌𝑌𝑘𝑘}𝑘𝑘≥0 is a discrete stochastic process satisfying the 
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transition probabilities and the parameters of the probability distribution related to each state. 

Estimation of the HMM parameters may be done with the use of the Baum-Welch algorithm 

(Baum et al., 1970), whereas to find the most probable path of states, the concept of smoothed 

or filtered probabilities can be exploited. Sometimes, the path of states may be optimal only 

locally, therefore it is advisable to use a more effective approach called Viterbi algorithm 

(Viterbi, 1967), which takes under consideration the whole period covered by the analysis. To 

be more formal, the Viterbi path is the path of states (𝑥𝑥1∗, 𝑥𝑥2∗, … , 𝑥𝑥𝑇𝑇∗ ) ∈ 𝑆𝑆𝑇𝑇 such, that 

 𝑃𝑃(𝑋𝑋1 = 𝑥𝑥1∗, 𝑋𝑋2 = 𝑥𝑥2∗,… , 𝑋𝑋𝑇𝑇 = 𝑥𝑥𝑇𝑇∗ |𝑌𝑌1 = 𝑦𝑦1, 𝑌𝑌2 = 𝑦𝑦2, . . , 𝑌𝑌𝑇𝑇 = 𝑦𝑦𝑇𝑇) = (2) 

max
(𝑥𝑥1,𝑥𝑥2,…,𝑥𝑥𝑇𝑇)∈𝑆𝑆𝑇𝑇

{𝑃𝑃(𝑋𝑋1 = 𝑥𝑥1, 𝑋𝑋2 = 𝑥𝑥2,… , 𝑋𝑋𝑇𝑇 = 𝑥𝑥𝑇𝑇|𝑌𝑌1 = 𝑦𝑦1, 𝑌𝑌2 = 𝑦𝑦2,… , 𝑌𝑌𝑇𝑇 = 𝑦𝑦𝑇𝑇)}. 

As a basis of the new dependence measure, presented in the next section, the Viterbi 

algorithm together with the Baum-Welch algorithm were used. Both of these algorithms are 

completely deterministic but their results strongly depend on the initial values and can be far 

from optimal. To increase the chance of finding the globally optimal solution, the Monte Carlo 

simulations were used (Bernardelli, 2013). In computations, 10000 repetitions were performed, 

because the presented examples proved to be stable. We restricted ourselves to the analysis of 

normal HMM with two-element state space S = {0, 1}, where time series under the analysis 

must satisfy the conditions 

 𝑌𝑌𝑛𝑛|𝑋𝑋𝑛𝑛=0~𝑁𝑁(𝜇𝜇0, 𝜎𝜎0) and 𝑌𝑌𝑛𝑛|𝑋𝑋𝑛𝑛=1~𝑁𝑁(𝜇𝜇1, 𝜎𝜎1). (3) 

 
such, that

	

of an extra layer. Formally, HMM {𝑋𝑋𝑘𝑘, 𝑌𝑌𝑘𝑘}𝑘𝑘≥0 is a discrete stochastic process satisfying the 

following conditions: 

1) the unobservable process {𝑋𝑋𝑡𝑡}𝑡𝑡≥0 is a homogenous MC with a finite state space S, 

2) conditionally on the process {𝑋𝑋𝑡𝑡}𝑡𝑡≥0 the observations {𝑌𝑌𝑡𝑡}𝑡𝑡≥0 are independent, and for each 

t the conditional distribution of Yt depends only on Xt. 

In macroeconomic applications, the normal HMM is often used, which refers to the case 

where Yt has a Gaussian distribution. HMM are widely used in the areas, where the pattern 

recognition is explored, such as speech, handwriting, gesture or voice recognition. HMM is also 

used in bioinformatics (e.g. DNA sequencing process) or macroeconomics (e.g. business cycles 

synchronization analysis, turning points identification).  

In HMM the states are unobservable, and a few algorithms for calculating them exist. All 

of them are based on another observable time series, to be more precise, on the estimated 

transition probabilities and the parameters of the probability distribution related to each state. 

Estimation of the HMM parameters may be done with the use of the Baum-Welch algorithm 

(Baum et al., 1970), whereas to find the most probable path of states, the concept of smoothed 

or filtered probabilities can be exploited. Sometimes, the path of states may be optimal only 

locally, therefore it is advisable to use a more effective approach called Viterbi algorithm 

(Viterbi, 1967), which takes under consideration the whole period covered by the analysis. To 

be more formal, the Viterbi path is the path of states (𝑥𝑥1∗, 𝑥𝑥2∗, … , 𝑥𝑥𝑇𝑇∗ ) ∈ 𝑆𝑆𝑇𝑇 such, that 

 𝑃𝑃(𝑋𝑋1 = 𝑥𝑥1∗, 𝑋𝑋2 = 𝑥𝑥2∗,… , 𝑋𝑋𝑇𝑇 = 𝑥𝑥𝑇𝑇∗ |𝑌𝑌1 = 𝑦𝑦1, 𝑌𝑌2 = 𝑦𝑦2, . . , 𝑌𝑌𝑇𝑇 = 𝑦𝑦𝑇𝑇) = (2) 
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(𝑥𝑥1,𝑥𝑥2,…,𝑥𝑥𝑇𝑇)∈𝑆𝑆𝑇𝑇

{𝑃𝑃(𝑋𝑋1 = 𝑥𝑥1, 𝑋𝑋2 = 𝑥𝑥2,… , 𝑋𝑋𝑇𝑇 = 𝑥𝑥𝑇𝑇|𝑌𝑌1 = 𝑦𝑦1, 𝑌𝑌2 = 𝑦𝑦2,… , 𝑌𝑌𝑇𝑇 = 𝑦𝑦𝑇𝑇)}. 

As a basis of the new dependence measure, presented in the next section, the Viterbi 

algorithm together with the Baum-Welch algorithm were used. Both of these algorithms are 

completely deterministic but their results strongly depend on the initial values and can be far 

from optimal. To increase the chance of finding the globally optimal solution, the Monte Carlo 

simulations were used (Bernardelli, 2013). In computations, 10000 repetitions were performed, 

because the presented examples proved to be stable. We restricted ourselves to the analysis of 

normal HMM with two-element state space S = {0, 1}, where time series under the analysis 

must satisfy the conditions 

 𝑌𝑌𝑛𝑛|𝑋𝑋𝑛𝑛=0~𝑁𝑁(𝜇𝜇0, 𝜎𝜎0) and 𝑌𝑌𝑛𝑛|𝑋𝑋𝑛𝑛=1~𝑁𝑁(𝜇𝜇1, 𝜎𝜎1). (3) 

	 (2)

As a basis of the new dependence measure, presented in the next section, 
the Viterbi algorithm together with the Baum‑Welch algorithm were used. Both 
of these algorithms are completely deterministic but their results strongly depend 
on the initial values and can be far from optimal. To increase the chance of finding 
the globally optimal solution, the Monte Carlo simulations were used (Bernardelli, 
2013). In computations, 10000 repetitions were performed, because the present‑
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ed examples proved to be stable. We restricted ourselves to the analysis of normal 
HMM with two‑element state space S = {0, 1}, where time series under the anal‑
ysis must satisfy the conditions

	

of an extra layer. Formally, HMM {𝑋𝑋𝑘𝑘, 𝑌𝑌𝑘𝑘}𝑘𝑘≥0 is a discrete stochastic process satisfying the 
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1) the unobservable process {𝑋𝑋𝑡𝑡}𝑡𝑡≥0 is a homogenous MC with a finite state space S, 

2) conditionally on the process {𝑋𝑋𝑡𝑡}𝑡𝑡≥0 the observations {𝑌𝑌𝑡𝑡}𝑡𝑡≥0 are independent, and for each 

t the conditional distribution of Yt depends only on Xt. 

In macroeconomic applications, the normal HMM is often used, which refers to the case 

where Yt has a Gaussian distribution. HMM are widely used in the areas, where the pattern 

recognition is explored, such as speech, handwriting, gesture or voice recognition. HMM is also 

used in bioinformatics (e.g. DNA sequencing process) or macroeconomics (e.g. business cycles 

synchronization analysis, turning points identification).  

In HMM the states are unobservable, and a few algorithms for calculating them exist. All 

of them are based on another observable time series, to be more precise, on the estimated 

transition probabilities and the parameters of the probability distribution related to each state. 

Estimation of the HMM parameters may be done with the use of the Baum-Welch algorithm 

(Baum et al., 1970), whereas to find the most probable path of states, the concept of smoothed 

or filtered probabilities can be exploited. Sometimes, the path of states may be optimal only 

locally, therefore it is advisable to use a more effective approach called Viterbi algorithm 

(Viterbi, 1967), which takes under consideration the whole period covered by the analysis. To 

be more formal, the Viterbi path is the path of states (𝑥𝑥1∗, 𝑥𝑥2∗, … , 𝑥𝑥𝑇𝑇∗ ) ∈ 𝑆𝑆𝑇𝑇 such, that 

 𝑃𝑃(𝑋𝑋1 = 𝑥𝑥1∗, 𝑋𝑋2 = 𝑥𝑥2∗,… , 𝑋𝑋𝑇𝑇 = 𝑥𝑥𝑇𝑇∗ |𝑌𝑌1 = 𝑦𝑦1, 𝑌𝑌2 = 𝑦𝑦2, . . , 𝑌𝑌𝑇𝑇 = 𝑦𝑦𝑇𝑇) = (2) 

max
(𝑥𝑥1,𝑥𝑥2,…,𝑥𝑥𝑇𝑇)∈𝑆𝑆𝑇𝑇

{𝑃𝑃(𝑋𝑋1 = 𝑥𝑥1, 𝑋𝑋2 = 𝑥𝑥2,… , 𝑋𝑋𝑇𝑇 = 𝑥𝑥𝑇𝑇|𝑌𝑌1 = 𝑦𝑦1, 𝑌𝑌2 = 𝑦𝑦2,… , 𝑌𝑌𝑇𝑇 = 𝑦𝑦𝑇𝑇)}. 

As a basis of the new dependence measure, presented in the next section, the Viterbi 

algorithm together with the Baum-Welch algorithm were used. Both of these algorithms are 

completely deterministic but their results strongly depend on the initial values and can be far 

from optimal. To increase the chance of finding the globally optimal solution, the Monte Carlo 

simulations were used (Bernardelli, 2013). In computations, 10000 repetitions were performed, 

because the presented examples proved to be stable. We restricted ourselves to the analysis of 

normal HMM with two-element state space S = {0, 1}, where time series under the analysis 

must satisfy the conditions 

 𝑌𝑌𝑛𝑛|𝑋𝑋𝑛𝑛=0~𝑁𝑁(𝜇𝜇0, 𝜎𝜎0) and 𝑌𝑌𝑛𝑛|𝑋𝑋𝑛𝑛=1~𝑁𝑁(𝜇𝜇1, 𝜎𝜎1). (3) 	 (3)

We additionally assume that μ0 < μ1 to have the same order of states in each 
considered case (state 1 is associated with a greater mean value).

The presented procedure, involving Monte Carlo simulations, Baum‑Welch al‑
gorithm, and Viterbi algorithm, allows for the finding of the optimal path of states 
for the considered time series. This path, called the Viterbi path, is the foundation 
of the new dependence measure.

4. Dependence measure based on hidden 
Markov model

In the previous section, the concept of HMM and Viterbi path was described. 
In this section the description of the measure for assessing the relationship be‑
tween time series is presented. The procedure, in order to get the result in the em‑
pirical analysis, explores the concept of HMM and Viterbi path described in the 
previous section.

The procedure of calculation can be described in the following steps:
1.	 Normalization of time series xt and yt 

	

We additionally assume that μ0 < μ1 to have the same order of states in each considered case 

(state 1 is associated with a greater mean value). 

The presented procedure, involving Monte Carlo simulations, Baum-Welch algorithm, and 

Viterbi algorithm, allows for the finding of the optimal path of states for the considered time 

series. This path, called the Viterbi path, is the foundation of the new dependence measure. 

4. Dependence measure based on hidden Markov model 

In the previous section, the concept of HMM and Viterbi path was described. In this section 

the description of the measure for assessing the relationship between time series is presented. 

The procedure, in order to get the result in the empirical analysis, explores the concept of HMM 

and Viterbi path described in the previous section.  

The procedure of calculation can be described in the following steps: 

1. Normalization of time series xt and yt 

 𝑥𝑥𝑡̃𝑡 =
𝑥𝑥𝑡𝑡−min𝑠𝑠 𝑥𝑥𝑠𝑠

max𝜏𝜏 |𝑥𝑥𝜏𝜏−min𝑠𝑠 𝑥𝑥𝑠𝑠|
 and 𝑦𝑦𝑡̃𝑡 =

𝑦𝑦𝑡𝑡−min𝑠𝑠 𝑦𝑦𝑠𝑠
max𝜏𝜏 |𝑦𝑦𝜏𝜏−min𝑠𝑠 𝑦𝑦𝑠𝑠|

 (4) 

This step is necessary because time series can be expressed in different units and sizes. 

After normalization 𝑥𝑥𝑡̃𝑡, 𝑦𝑦𝑡̃𝑡 ∈ [0; 1]. Of course, there are many other methods of 

normalization (Walesiak, 2016), however, formula (4) gives the values suitable for an 

input to the HMM.  

2. Calculation of the difference between normalized time series. Depending on the sign of 

the Pearson’s correlation coefficient we define  

 𝑧𝑧𝑡̃𝑡 =
(𝑥𝑥𝑡̃𝑡−𝑦𝑦𝑡̃𝑡)−min𝑠𝑠 (𝑥𝑥𝑠̃𝑠−𝑦𝑦𝑠̃𝑠)

max𝜏𝜏 |(𝑥𝑥𝜏̃𝜏−𝑦𝑦𝜏̃𝜏)−min𝑠𝑠 (𝑥𝑥𝑠̃𝑠−𝑦𝑦𝑠̃𝑠)|
 (5) 

for positively correlated time series 𝑥𝑥𝑡̃𝑡 and 𝑦𝑦𝑡̃𝑡, and 

 𝑧𝑧𝑡̃𝑡 =
(𝑥𝑥𝑡̃𝑡+𝑦𝑦𝑡̃𝑡)−min𝑠𝑠 (𝑥𝑥𝑠̃𝑠+𝑦𝑦𝑠̃𝑠)

max𝜏𝜏 |(𝑥𝑥𝜏̃𝜏+𝑦𝑦𝜏̃𝜏)−min𝑠𝑠 (𝑥𝑥𝑠̃𝑠+𝑦𝑦𝑠̃𝑠)|
 (6) 

for negatively correlated time series 𝑥𝑥𝑡̃𝑡 and 𝑦𝑦𝑡̃𝑡. Formulas (5) and (6) are, in fact, the 

same normalization as in (4) but for time series 𝑥𝑥𝑡̃𝑡 − 𝑦𝑦𝑡̃𝑡 or 𝑥𝑥𝑡̃𝑡 + 𝑦𝑦𝑡̃𝑡, depending on the 

direction of the Pearson’s correlation. 

3. Calculation of the parameters of HMM and Viterbi path for time series 𝑧𝑧𝑡̃𝑡constructed in 

step 2. The procedure was described in the previous section. Let 𝑣𝑣𝑡𝑡 denote the Viterbi 

path for 𝑧𝑧𝑡̃𝑡. States 0 on this path represent periods where original time series 𝑥𝑥𝑡𝑡 and 𝑦𝑦𝑡𝑡 
are similar and states 1 may be interpreted as a period in which given time series diverge.  

	 (4)

This step is necessary because time series can be expressed in different 
units and sizes. After normalization 

We additionally assume that μ0 < μ1 to have the same order of states in each considered case 

(state 1 is associated with a greater mean value). 

The presented procedure, involving Monte Carlo simulations, Baum-Welch algorithm, and 

Viterbi algorithm, allows for the finding of the optimal path of states for the considered time 

series. This path, called the Viterbi path, is the foundation of the new dependence measure. 

4. Dependence measure based on hidden Markov model 

In the previous section, the concept of HMM and Viterbi path was described. In this section 

the description of the measure for assessing the relationship between time series is presented. 

The procedure, in order to get the result in the empirical analysis, explores the concept of HMM 

and Viterbi path described in the previous section.  

The procedure of calculation can be described in the following steps: 

1. Normalization of time series xt and yt 
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This step is necessary because time series can be expressed in different units and sizes. 

After normalization 𝑥𝑥𝑡̃𝑡, 𝑦𝑦𝑡̃𝑡 ∈ [0; 1]. Of course, there are many other methods of 

normalization (Walesiak, 2016), however, formula (4) gives the values suitable for an 
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the Pearson’s correlation coefficient we define  
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3. Calculation of the parameters of HMM and Viterbi path for time series 𝑧𝑧𝑡̃𝑡constructed in 

step 2. The procedure was described in the previous section. Let 𝑣𝑣𝑡𝑡 denote the Viterbi 

path for 𝑧𝑧𝑡̃𝑡. States 0 on this path represent periods where original time series 𝑥𝑥𝑡𝑡 and 𝑦𝑦𝑡𝑡 
are similar and states 1 may be interpreted as a period in which given time series diverge.  

. Of course, there are many 
other methods of normalizatvion (Walesiak, 2016), however, formula (4) gives 
the values suitable for an input to the HMM.

2.	 Calculation of the difference between normalized time series. Depending 
on the sign of the Pearson’s correlation coefficient we define

	

We additionally assume that μ0 < μ1 to have the same order of states in each considered case 

(state 1 is associated with a greater mean value). 

The presented procedure, involving Monte Carlo simulations, Baum-Welch algorithm, and 

Viterbi algorithm, allows for the finding of the optimal path of states for the considered time 

series. This path, called the Viterbi path, is the foundation of the new dependence measure. 

4. Dependence measure based on hidden Markov model 

In the previous section, the concept of HMM and Viterbi path was described. In this section 

the description of the measure for assessing the relationship between time series is presented. 

The procedure, in order to get the result in the empirical analysis, explores the concept of HMM 

and Viterbi path described in the previous section.  
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are similar and states 1 may be interpreted as a period in which given time series diverge.  
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for positively correlated time series 

We additionally assume that μ0 < μ1 to have the same order of states in each considered case 

(state 1 is associated with a greater mean value). 

The presented procedure, involving Monte Carlo simulations, Baum-Welch algorithm, and 

Viterbi algorithm, allows for the finding of the optimal path of states for the considered time 

series. This path, called the Viterbi path, is the foundation of the new dependence measure. 

4. Dependence measure based on hidden Markov model 

In the previous section, the concept of HMM and Viterbi path was described. In this section 

the description of the measure for assessing the relationship between time series is presented. 

The procedure, in order to get the result in the empirical analysis, explores the concept of HMM 

and Viterbi path described in the previous section.  

The procedure of calculation can be described in the following steps: 

1. Normalization of time series xt and yt 
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. Compare this result with Pearson’s correla‑
tion coefficient equal 0.6951. Looking at the original time series, the new measure 
definitely describes dependence more accurately than the Pearson’s correlation. 
After all, the time series are similar exactly 94% of the time. Of course, the still 
unresolved issue is the comparison to other methods, especially these designed 
for the time series only. We will not give this kind of comparison. We will, how‑
ever, state some facts about the advantages of the proposed method. One of them 
is the lack of econometric character assumptions. The second, is the ease of the 
interpretation of the results. And the last but not least is the significant advantage 
of the possibility of phases identification, when the time series are similar and the 
times when they are not.
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Figure 2. Time series zt from step 2 (top figure) and corresponding Viterbi path vt (bottom figure)
Source: own calculations

In the next section other examples and illustration of the comparison of the 
proposed dependence measure with the Pearson’s correlation coefficient are pre‑
sented. Among these examples, there are also time series from the Central Statis‑
tical Office of Poland.

5. Real‑life examples

Some examples are given in this section to illustrate the usefulness of the depend‑
ence measure based on the hidden Markov models. In the example given in the 
previous section the value rHMM was much greater than the value of the Pearson’s 
correlation coefficient r. The next example is also artificial, and illustrates the op‑
posite relation between two measures. The example consists of two shifted sine 
functions (see Figure 3). Time series after normalization are given in Figure 4. The 
shape of the normalized time series and the original ones are similar, but the values 
are different: [–1; 1] vs. [0; 1] (see the y‑axis). The graphs of the time series from 
the second (zt) and third (vt) steps of the procedure are given in Figure 5. The peri‑
ods of convergence and divergence are easily visible. Calculation of the percentage 
of the 0 states in the Viterbi path results in the value of the measure rHMM = 0.56, 
which is smaller compared to the Pearson’s correlation coefficient r = 0.87. The shift 
between the original time series is big enough to imply similarities about 56% of the 
time. Choosing a smaller shift we would get a greater value of coefficient rHMM.
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Figure 3. Two sine functions (xt and yt ) shifted relative to each other
Source: own calculations
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Figure 4. Two sine functions (and) after normalization (step 1)
Source: own calculations

The last two examples are based on the data from the Central Statistical Office 
of Poland. In the first one we are interested in checking the dependence between 
the number of working women and men in Poland in years 1995–2016. Time se‑
ries before and after normalization are given in Figure 6.

Before normalization time series seem to be similar at the end of the considered 
period. After normalization, we can see that the behavior of the time series is alike 
rather in the middle period. According to the Viterbi path (see Figure 7), a number 
of working men and women in Poland were correlated until 2008, and after that year 
we can talk about the divergence between the number of people in the considered 
groups. The resulting value of the measure rHMM = 0.64 indicates much smaller rela‑
tionship than the Pearson’s correlation coefficient r = 0.84. The verification of which 
out of the two measures is more accurate is, of course, arbitrary, but thinking about 
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economic interpretation, it can be clearly seen, that the number of people in the two 
groups of men and women changes at a different pace, starting around 2009. Keep‑
ing this in mind, the measure proposed in this article seems to be better suited.
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Figure 5. Time series zt (solid line) and Viterbi path vt (dashed line) for the time series from Figure 3
Source: own calculations
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Figure 6. Number of working people by sex in Poland in 1995–2016 before (top) and after (bottom) 
normalization

Source: own calculations
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Figure 7. Time series zt from step 2 (solid line) and a corresponding Viterbi path vt (dashed line) for 
the time series from Figure 6

Source: own calculations

In the last example a number of marriages in two neighboring voivodships: 
lodzkie and mazowieckie, are compared. The time series after normalization are 
given in Figure 8.
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Figure 8. A number of marriages in lodzkie and mazowieckie in 1995–2016 (after normalization)
Source: own calculations
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Figure 9. Time series zt from step 2 (solid line) and a corresponding Viterbi path vt (dashed line) for 
the time series from Figure 8

Source: own calculations

The Viterbi path for this example is presented in Figure 9. The values of the 
correlation coefficient are as follows rHMM = 0.85 and r = 0.85. As before, it seems 
that the measure based on HMM gives a more accurate assessment of the depend‑
ence, than the Pearson’s correlation coefficient.

6. Conclusions

HMM proved to be an effective method of analyzing the macroeconomic time 
series in many applications. It was already used in turning point identification, 
synchronization of the business cycles, and analysis of convergence. In this arti‑
cle, the new measure of dependence between time series involving the use of the 
HMM and the Viterbi path was shown. The advantages of this method are mostly: 
the weak assumptions of applicability and the ease of interpretation of the results. 
In the given measure only two state HMM was used, but it is probably worth no‑
ticing, that the generalization to more than two states is possible. Examples from 
the previous sections should provide the evidence for the usefulness of this meas‑
ure in the analysis of the time series of the economic character. The measure it‑
self, however, should not be treated as a substitute for the Pearson’s correlation, 
but rather as a complementary method to the dependence measure.
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Ukryte modele Markowa jako narzędzie oceny zależności zjawisk o charakterze 
ekonomicznym

Streszczenie: Ocena zależności między szeregami czasowymi jest zagadnieniem, które jest czę‑
sto rozwiązywane za pomocą współczynnika korelacji Pearsona. Niestety, czasami wyniki mogą być 
bardzo mylące. W artykule przedstawiono alternatywną miarę badania zależności, opartą na ukry‑
tych modelach Markowa oraz ścieżkach Viterbiego. Zaproponowana metoda nie jest uniwersalna, 
ale wydaje się dość dokładnie odzwierciedlać podobieństwo między szeregami czasowymi, ekspo‑
nując okresy zbieżności i rozbieżności. Przydatność tej nowej miary została zweryfikowana na przy‑
kładach, jak również realnych danych makroekonomicznych. Zaletami tej metody są: słabe założenia 
stosowalności, łatwość interpretacji wyników, możliwość generalizacji i wysoka skuteczność w ocenie 
zależności różnych szeregów czasowych o charakterze ekonomicznym. Nie należy jej jednak trakto‑
wać jako substytutu korelacji Pearsona, a raczej jako uzupełniającą metodę pomiaru zależności.

Słowa kluczowe: miara zależności, korelacja, ukryty model Markowa, ścieżka Viterbiego

JEL: C63, E24, C18
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