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1. Introduction

The most popular tools used in structural vector autoregressive (VAR) analysis 
are the impulse response functions (IRFs) and the forecast error variance decom‑
positions (FEVDs). Estimation precision of the parameters of IRFs and FEVDs 
depends, among others, on the identification scheme used to obtain structural 
shocks. In particular, it was emphasized that it might be difficult to estimate ac‑
curately the long‑run effects of structural shocks using SVARs identified with 
long‑run restrictions (e.g., Faust, Leeper, 1997; Christiano, Eichenbaum, Vigfus‑
son, 2006; Francis et al., 2014; see also Kilian, Lütkepohl, 2017 for an overview). 
These problems can be more severe if the model is misspecified, e.g. it contains 
too few lags of the modelled variables. This implies that VARs based on long‑run 
restrictions might be unreliable in empirical studies.

Lütkepohl, Staszewska‑Bystrova and Winker (2017) compared, by means 
of Monte Carlo experiments, the relative estimation accuracy for impulse responses 
associated with popular short‑run and long‑run identifying restrictions for struc‑
tural VAR models. To allow direct comparison, such data generating processes 
(DGPs) and such short‑run and long‑run identifying restrictions were devised 
which implied exactly the same structural impulse responses. The estimation ac‑
curacy measure was given by the mean squared error (MSE). It was shown that 
short‑run restrictions lead, as expected, to more precise estimates of the impact 
effects of shocks, but long‑run responses for persistent processes may be esti‑
mated more accurately when long‑run identification scheme is followed. In the 
VAR context, estimation uncertainty is usually depicted using confidence inter‑
vals or bands (see e.g. Staszewska, 2007; Lütkepohl, Staszewska‑Bystrova, Wink‑
er, 2015a; 2015b). Larger estimation accuracy implies narrower and hence more 
informative confidence regions.

In this paper, the relative estimation precision of forecast error variance de‑
compositions under selected types of short‑run and long‑run identifying restric‑
tions is analyzed using some suitably designed Monte Carlo experiments. The 
aim is to verify concerns from the literature related to poor estimation accuracy 
associated with using long‑run identification schemes. The findings of Lütkepohl, 
Staszewska‑Bystrova and Winker (2017) indicate that it should be possible to pres‑
ent cases when a long‑run approach to identification outperforms a short‑run iden‑
tification scheme in terms of estimation precision of the FEVD parameters.

The experimental design involves DGPs which imply the same FEVD when 
matched with the short‑run recursive identification scheme and recursive restric‑
tions concerning long‑run effects of shocks. The former type of restrictions are 
common in applications (see, for example Kilian, 2009; Li, İşcan, Xu, 2010 or Bru‑
no, Shin, 2015). The latter were used e.g. by Blanchard and Quah (1989) (hence 
they are often referred to as Blanchard‑Quah type of restrictions), Chaudourne, 
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Fève and Guay (2014) or Lin and Liu (2016). The specific setup of the simulations 
makes it possible to directly compare the impact of using these alternative iden‑
tification schemes on the estimation accuracy of FEVDs. Furthermore, the DGPs 
under study are two‑ or three‑dimensional, exhibit various degrees of persistence 
and have the form of finite‑ and infinite‑order VARs. Therefore, they share char‑
acteristics of many models used in empirical studies.

The structure of the paper is as follows. In Section 2 the structural vector au‑
toregressive model and the forecast error variance decomposition are presented. 
Sections 3 and 4 discuss respectively, design of the Monte Carlo experiments and 
the results obtained. Finally, Section 5 concludes.

2. The model

The general form of the reduced‑form VAR model under consideration is given by:
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The matrices sB  or lB  can be used in the impulse response analysis or to con‑
duct the forecast error variance decomposition which is the focus of this paper. The 
FEVD consists in computing proportions of the h‑step forecast error variance of each 
variable accounted for by the structural shocks. The contribution of k‑th shock to the 
forecast error variance of variable j at horizon h for h = 0, 1, …, is given by
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where ek represents the k‑th column of an identity matrix of order K and ,jk iθ  
stands for the jk‑th element of Θi. For systems which are stationary it is possible 
to consider this decomposition for finite horizons but also for horizon infinity.

Lütkepohl, Staszewska‑Bystrova and Winker (2017) show that Bs and lB  ma‑
trices are identical if ( )1A  is lower triangular and ( ) 11 sA B−

 has positive diagonal 
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elements. In such cases, the structural impulse responses Θi  implied by the spe‑
cific types of short‑run and long‑run restrictions are also the same. Since ,jk hω ’s 
depend, in a nonlinear fashion, only on the Θi  values, they are also identical if the 
above conditions are met. It should be emphasized that the equivalence concerns 
the true parameter values. In empirical work, these quantities have to be estimated 
and the estimates obtained using short‑run restrictions will be different than those 
corresponding to long‑run restrictions. The discrepancy arises since the estimated 
( )1A  matrix will not be lower triangular.

Derivation of conditions required for the equality of the parameters of FEVDs 
obtained using Blanchard‑Quah type of restrictions and short‑run recursive re‑
strictions, makes it possible to set up simulation experiments for analyzing  
the relative estimation accuracy corresponding to these identification schemes. The 
design of such a Monte Carlo study is provided in the next section.

3. Monte Carlo experiments

The DGPs used in simulations meet the criteria necessary to ensure that the true pa‑
rameters of the forecast error variance decomposition under short‑run and long‑run 
identification schemes are exactly the same. Both finite and infinite VAR processes 
are investigated. In the latter case the model used for the analysis can only approx‑
imate the true DGP which can have an impact on the results.

Estimation is performed using multivariate least squares and its precision 
is measured by the mean squared error. To allow quick comparisons, the results 
are presented as MSE ratios computed for the FEVD parameters, where the value 
in the numerator corresponds to identification based on short‑run restrictions and 
the denominator value is associated with long‑run restrictions. Thus, values great‑
er than one mean that long‑run identifying restrictions lead, on average, to more 
accurate estimates of FEVD parameters than short‑run restrictions, while values 
smaller than one imply the opposite conclusion.

The first DGP (DGP1) is trivariate and has the form:

 

11 12

1 12

0 0 1 0.2
0.3 0.7 0 ,    ~ . . . 0, 1 0.2 ,
0.2 0.2 0.5 0.2 0.2 1

t t t ty y u u i i d N
α σ

σ−

    
    = +     
        

 

where { }11 0.9, 0.5,0,0.5, 0.9α ∈ − −  and { }12 0.2,0.5σ ∈ . This DGP describes se‑
ries of various degrees of persistence, controlled by the parameter 11α , and hence 
captures the features of many observed economic variables (measured in levels 
or growth rates). The system is most persistent for 11 0.9 α =  and 11 0.9 α = − . The 
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parameter 12σ  measures correlation between the error terms. DGP1 is typical for 
Monte Carlo analyses of stable vector autoregressions where it is quite common 
to study bivariate or trivariate processes with one lag, varying degree of persis‑
tence and alternative correlations between the errors (see e.g. Kilian, 1998 or Kim, 
2014). Models with two or three variables are also popular in applications. Sim‑
ilar DGP (labeled as DGP2) was used by Lütkepohl, Staszewska‑Bystrova and 
Winker (2017) who considered identical values of the autoregressive parameters 
but slightly different variance matrix of the errors which was fixed. In this paper 
two different forms of the covariance matrix are considered to study sensitivity 
of the results with respect to strength of contemporaneous correlations between 
the error terms.

For DGP1,

 
( )

111 0 0
1 0.3 0.3 0

0.2 0.2 0.5
A

α− 
 = − 
 − −   
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( ) ( )
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Since ( )1A  is lower triangular and the elements on the main diagonal of 
( ) 11 sA B−

 are positive, then it follows that s lB B=  which can be easily checked. 
This equality implies that the true parameter values of the forecast error variance 
decomposition are the same, independently of whether short‑run or long‑run re‑
strictions are used.
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The next DGP (DGP2) is a 4‑dimensional system with two lags:

 

1 2
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The stability condition (2) is met for this DGP, however the process is quite 
persistent as the absolute value of the dominant root is close to 1 and amounts 
to 1.0529.

Matrices ( )1A  and ( ) 1 1 sA B−
 are as follows

 ( ) ( ) 1

0.2     0 0       0 5   0 0       0
0.3    0.3 0       0 6         3.18 0       0

                                     1 ,  1 ,
0.2 0.5 0.4 0 10.75 4.53 2.32 0
0.7 0.5 0.3 0.4 25.06 7.92 2.18 2.28

sA A B−

   
   −   = =
   − −
   − − −   

and so the forecast error variance decomposition returns the same true values for 
short‑run and long‑run identification approach.

DGP2 is studied as persistent processes with a root close to one are very com‑
mon in empirical macroeconomic studies.

DGP3 involves richer dynamics than DGP1 and DGP2 as its lag order 
amounts to 8:

 1 2 3 4 8

0.5 0.3 0 0.2 0.1 0 0.3 0.1 0 0
.

0.4 0.3 0.3 0 0 0.2 0 0 0 0.2t t t t t t ty y y y y y u− − − − −

− − − −         
= + + + + +         − − −         

 
1 2 3 4 8

0.5 0.3 0 0.2 0.1 0 0.3 0.1 0 0
.

0.4 0.3 0.3 0 0 0.2 0 0 0 0.2t t t t t t ty y y y y y u− − − − −

− − − −         
= + + + + +         − − −         

http://www.czasopisma.uni.lodz.pl/foe/


FOE 5(338) 2018 www.czasopisma.uni.lodz.pl/foe/

122 Anna Staszewska‑Bystrova

The process is considered, as greater lag length is likely to affect the accu‑
racy of the implied FEVD parameter estimators. ut are zero mean errors with the 

variance matrix 
1 0.2

0.2 1
 
 
 

. The smallest modulus of a root of the reverse char‑

acteristic polynomial from (2) is 1.1087, implying stability of this DGP. The form 

of matrices ( )1A  and ( ) 11 sA B− :

 
( ) ( ) 10.9 0 1.11 0

 1    and    1 ,
0.1 1.1 0.28 0.89

sA A B−   
= =   −     

indicates that FEVD for both approaches to identification yield the same results 
if true parameter values are used.

Finally, the most complex data generating process (DGP4) is VMA(1) which 
corresponds to a VAR with infinite lag order. Such processes are often considered 
in the literature as they are consistent with the popular dynamic stochastic general 
equilibrium (DSGE) models (see e.g. Giacomini, 2013). DGP4 has the form:

 

11

1 1 1

0 0
0.3 0.7 0 , 
0.2 0.2 0.5

t t t t ty u M u u u
α

− −

 
 = + = +  
  

 

1 0.2 0.2
 ~ . . . 0, 0.2 1 0.2 ,

0.2 0.2 1
tu i i d N

  
  
  
    

where { }11 0.9, 0.5,0,0.5, 0.9α ∈ − − . As typical for Monte Carlo analyses of VMA 
processes, the objective of considering different values of 11α  is to obtain alterna‑
tive magnitudes of the roots of the characteristic equation ( )3 1det + 0I M z =  (see 
e.g. Galbraith, Ullah, Zinde‑Walsh, 2002 or Bruder, 2015). In effect, DGP4 might 
characterize a large number of empirical processes.

( )1A  and ( ) 11 sA B−
, corresponding to DGP4, are
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 −

=  + 
 −

− 
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 ( )
11

1
1 0 0

1 0.64 1.67 0
0.54 0.44 1.45

sA B
α

−
+ 

 =  
  

.

and so they also meet the conditions required for equality of sB  and lB .
Further settings for the simulation experiments are as follows. The number 

of Monte Carlo replications is given by 5000 (see e.g. Huh, 2013 or Ludvigson, Ma, 
Ng, 2017 who employ the same number of Monte Carlo trials in simulations similar 
to those performed in this study). Two sample sizes are analyzed, { }200, 400T ∈ . 
These values approximate numbers of observations typically used in empirical 
macroeconometric investigations. Sample sizes of 100 or smaller, which might 
be also of interest, are not considered given a considerable complexity of some 
of the DGPs under investigation. The true lag order is assumed to be known for 
DGP1, DGP2 and DGP3 or it is selected based on the Akaike information crite‑
rion (AIC). The lag length for DGP4 is only estimated using AIC. The maximum 
lag order for model selection is set to 10 if T = 200 and to 14 if T = 400. The VAR 
models include intercepts.
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Figure 1. Relative MSEs for the estimation of forecast error variance decomposition for DGP1 with 
σ12 = 0.2, T = 200 and lag order selected using AIC

Source: own elaboration

4. Results

In this section, selected simulation results are presented. First, conclusions for 
DGPs with small number of lags are described (DGP1 and DGP2) and later, pro‑
cesses with richer dynamics (DGP3 and DGP4) are analyzed.

Figure 1 shows the MSE ratios for the forecast error variance decomposition for 
DGP1 with alternative values of 11α  and 12 0.2σ = , estimated on the basis of 200 
observations for horizons 1 and infinity. Infinity is approximated by a large horizon 
for which convergence of the estimated values is achieved (the convergence criterion 
is set to 0.001). The results were obtained under the more realistic assumption of un‑
known lag order of the VAR that generated the data, i.e. the lag length was chosen 
using AIC. The values marked with bars greater than 1 indicate that the MSE corre‑
sponding to long‑run restrictions is smaller than that for short‑run restrictions.
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Figure 2. Relative MSEs for the estimation of forecast error variance decomposition for DGP1 with  
α11 = 0.9, σ12 = 0.2, T = 200 and lag order selected using AIC for horizons h = 0,1,…,12

Source: own elaboration

It is clear that for h = 1 all the parameters of the forecast error variance de‑
composition are estimated more precisely under short‑run identifying restrictions. 
This result holds independently of the value of 11α . The conclusions change how‑
ever, when horizon infinity is considered. In this case, the estimation precision de‑
pends on the dynamic features of the DGP. For 11 0.9α = , selected contributions 
of shocks to the forecast error variance of the variables (five out of nine) are esti‑
mated more accurately using the long‑run identification scheme. In some cases, 
i.e. for 11ω , 12ω , 13ω  and 23ω , the gains are very substantial as the relative MSEs 
have values between 3.03 (for 12 )ω  and 7.55 (for 23ω ). In the remaining cases for 

11 0.9α =  and horizon infinity, the MSEs corresponding to the estimation based 
on long‑run restrictions are not very much larger than those obtained using the 
short‑run identification scheme (the MSE ratios vary from 0.78 (for 32ω ) to 0.94 
(for 31ω )). This demonstrates that employing long‑run restrictions is not always 
associated with worse estimation accuracy of the parameters of FEVDs as com‑
pared to using short‑run restrictions implying the same true values of these pa‑
rameters.
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Figure 3. Relative MSEs for the estimation of forecast error variance decomposition for DGP2, 
T = 200 and lag order selected using AIC

Source: own elaboration

To analyze the effect of changing h, Figure 2 shows relative MSEs for DGP1 
with 11 0.9α = , 12 0.2σ =  and 200T =  for horizons 0,1, ,12… . It becomes ap‑
parent that the advantages associated with using long‑run restrictions which could 
be noticed at h = ∞  for 11ω , 12ω , 13ω , 23ω  and 33ω  manifest themselves much 
earlier, for horizons smaller than 12.

These graphs look very similar for T = 400 and for the true lag order used 
in the estimated VAR. Also, in these cases, the parameters 11ω , 12ω , 13ω  and 

23ω  are estimated much more precisely using Blanchard‑Quah type of restric‑
tions for 11 0.9α =  and h = ∞  (the values of the MSE ratios are even higher than 
for T = 200 and unknown lag length). Thus, some general conclusions for DGP1 
are as follows. The forecast error variance decomposition can be estimated more 
precisely, as measured by the MSE, using short‑run restrictions for initial hori‑
zons and process with roots further from 1, but it might be beneficial to use re‑
strictions on the long‑run effects of the shocks for persistent processes and in‑
termediate or long horizons. The conclusions do not change if 12σ  is set to 0.5 
instead of 0.2.
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Figure 4. Relative MSEs for the estimation of forecast error variance decomposition for DGP3, 
T = 200 and lag order selected using AIC

Source: own elaboration

Figure 3 presents the MSE ratios (for 1h =  and for h = ∞ ) computed for 
DGP2. Again, results for estimated lag order of the VAR are shown. The sample 
size is 200. Relative MSEs from top panel of this graph are all smaller than 1, in‑
dicating estimation gains associated with using short‑run identifying restrictions. 
The conclusions concerning the relative estimation precision are again opposite 
for horizon infinity for which, for this quite persistent process, all the parame‑
ters apart from one ( 22ω ) are estimated with larger accuracy using restrictions 
on the long‑run effects of the shocks. As before, whenever long‑run restrictions 
lead to improvements in estimation precision, this can be already observed for rel‑
atively small values of h. In 7 out of 15 cases, the MSE ratios become larger than 
one for h ≤ 5, in further 7 cases they assume values greater than 1 for 6 < h ≤ 11 
and in one case ( 21ω ) in a further period.

The conclusions for DGP2 are qualitatively similar for the other experimen‑
tal settings, i.e. using the actual lag length in the estimated model and larger sam‑
ple size (T = 400).

http://www.czasopisma.uni.lodz.pl/foe/


FOE 5(338) 2018 www.czasopisma.uni.lodz.pl/foe/

128 Anna Staszewska‑Bystrova

Figure 5. Relative MSEs for the estimation of forecast error variance decomposition for DGP4, 
T = 200 and lag order selected using AIC

Source: own elaboration

Next, results for DGP3 are presented. These are given for two out of four ijω  
parameters as the relative estimation precision is identical for 11ω  and 12ω  and 
also for 21ω  and 22ω . The MSE ratios for T = 200 and the case of unknown lag 
order are shown in Figure 4. It can be seen that for a DGP which is quite persis‑
tent but contains more lags, using short‑run restrictions is more efficient than us‑
ing long‑run identifying assumptions for both 1h =  and h = ∞ . The same con‑
clusion as to the relative estimation precision holds true for intermediate horizons, 
larger sample size or even under the assumption that the correct number of lags 
is used in the model.

The conclusion that the relative estimation precision depends on specific fea‑
tures of the data generating process is confirmed for DGP4. In this case, a VAR 
model with up to 10 or 14 lags (for 200 and 400 observations respectively) is only 
an approximation to the true DGP. For both sample sizes analyzed (Figure 5 pre‑
sents the results for T = 200), the estimation precision is greater if short‑run iden‑
tifying restrictions are employed. This holds for all horizons h, including horizon 
infinity and all values of 11α .
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5. Conclusions

The aim of this paper was to compare estimation accuracy for the forecast error 
variance decomposition in structural vector autoregressive models identified us‑
ing short‑run and long‑run restrictions.

The analysis was performed by means of Monte Carlo simulations. To enable 
meaningful comparison, such data generating processes were used which imply 
exactly the same forecast error variance decomposition under two popular iden‑
tification schemes from the VAR literature, i.e. short‑run recursive identification 
scheme and long‑run Blanchard‑Quah type of restrictions.

The main conclusions from the study are as follows. For short horizons, the 
parameters of forecast error variance decomposition can be estimated more accu‑
rately under short‑run identifying restrictions than under long‑term restrictions. 
The results for intermediate as well as long horizons and horizon infinity depend 
on the features of the data generating process. For processes whose roots are far 
from 1 and those which can be only approximated by the model used, estimators 
based on short‑run restrictions have smaller mean squared errors than those using 
long‑run restrictions also for further horizons. The Blanchard‑Quah type of re‑
strictions may, however, have an advantage for persistent processes with roots close 
to 1 which can be well represented by the estimated model.
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Badanie dekompozycji wariancji błędów prognozy przy różnych schematach identyfikacji 
modeli wektorowej autoregresji za pomocą metody Monte Carlo

Streszczenie: Celem artykułu jest zbadanie dokładności estymacji parametrów dekompozycji wa‑
riancji błędów prognozy dla strukturalnych modeli wektorowej autoregresji zidentyfikowanych z uży‑
ciem restrykcji na parametry krótko‑ i długookresowe. W analizie wykorzystano eksperymenty Monte 
Carlo. Wykazano, że dla procesów o pierwiastkach, których wartość zbliżona jest do jedności, wy‑
brane parametry dekompozycji wariancji błędów prognozy można oszacować z większą precyzją 
przy założeniu trójkątnej macierzy mnożników długookresowych niż przy restrykcji trójkątnej ma‑
cierzy mnożników bezpośrednich. Uzyskane wyniki wnoszą wkład do dyskusji dotyczącej zalet i wad 
różnych schematów identyfikacji przez wskazanie kontrprzykładów dla hipotezy, że wykorzystanie 
restrykcji krótkookresowych prowadzi do mniejszych błędów szacunku niż zastosowanie restrykcji 
na parametry długookresowe.

Słowa kluczowe: dekompozycja wariancji błędów prognozy, strukturalne modele wektorowej au‑
toregresji, restrykcje długookresowe, restrykcje krótkookresowe
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