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1. Introduction

The contemporary multivariate statistical modelling methods are very powerful 
tools used in many different fields because of their explanatory power and overall 
good predictive abilities. In order to build a model with high predictive accura‑
cy, it is equally important: to choose adequate modelling method and to provide 
data of good quality. This paper focuses on the process of measuring the quality 
of the model used in the analysis. The scope of the paper is limited to the meth‑
ods for cross‑sectional data and more specifically to classification and multiple 
regression methods.

The implication of the No Free Lunch Theorem (Wolpert, Macready, 1997) 
is that, when averaged over all possible problems, no given method will perform 
better than any other. In other words, there is no such thing as the best method 
for all possible problems. Nevertheless, among the classification and regression 
methods there is a group of machine learning methods that proved in different 
benchmarking studies to have a very strong position in terms of predictive accu‑
racy (Meyer, Leisch, Hornik, 2003; Trzęsiok, 2006; 2007). Two ensemble methods 
based on classification and regression trees – Random Forests, Bagging, and Sup‑
port Vector Machines are very often in the top five in the rankings. These three 
methods also have the ability to be used, and perform well both in classification 
and regression tasks. Thus, we used these methods for illustration in the paper. 
In order to build a model with good predictive power you need to tune some in‑
ternal parameters which the selected methods depend on. This choice of parame‑
ters’ values is usually based on simulation study (e.g. b‑fold cross validation) with 
cross‑validated prediction error used as a measure for assessing the model quality. 
The same measure is then used for assessing the quality of the final model. This 
common practice (using the same measure when choosing the model variant and 
then for assessing final model’s predictive abilities) is very controversial. The goal 
of the paper is to present an overview of different model quality measures and then 
select two distinct approaches and use one of them to support model variant selec‑
tion and another one to assess the final model quality.

2. Model quality measures – a short overview

Let us assume that we are given the training set ( ) ( ){ }1, , , , ND y y= 1 Nx x , where 
d∈ix R  is the vector of predictors’ values and { }1,1iy ∈ −  defines the class the 

i‑th observation belongs to, { }1, ,i N∈   (we will consider only classifications 
problems with two classes). Then the goal of supervised learning is to find a “good” 
predictive classification function ( )y f= x , based on the available training set. 
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For the classification task, the most common measure of model quality is the clas‑
sification error, which is defined as:

 ( ) ( ) ( )
| |

1

1 ( , ) ( ) ,
| |

A
i i i i

i
Q I y Q I y f

Q
ε

=

= ∈ ⋅ =∑ x x  (1)

where A is the set of all available observations and Q is a subset of A (Q A⊆ ) con‑
taining the observations the classification error is measured on. If Q = D, then (1) 
is a goodness‑of‑fit measure (resubstitution error) denoted by εTRAIN. If Q is a test 
set or validation set, the measure is referred to as predictive ability of the model 
(εTEST).

Requiring separate training set and test set usually means wasting the infor‑
mation that is enclosed in the test set, which is available and could be used in the 
training process. In order to incorporate this information the b‑fold cross validation 
technique can be applied, where the original sample is randomly partitioned into 
b subsamples and one is left out in each iteration as validation set (on which the 
classification error is computed) and the remaining part is used for training. Then 
the average of the obtained b classification errors (εb–CV) is used and it is an unbi‑
ased estimator of the true classification error over all possible observations (Ko‑
havi, 1995; Rozmus, 2008: 40–41). There is also a possibility of using a different 
sampling technique, namely bootstrapping and computing the classification error 
on the set of observations that were not included in the given bootstrap sample 
(OOB – Out of Boost observations). As a result we obtain another measure of pre‑
dictive ability of the classifier – εOOB. Although all presented measures are com‑
puted in a similar way, they must be seen as distinct model quality measures.

With imbalanced data sets, an algorithm does not get the necessary informa‑
tion about the minority class to make an accurate prediction (especially for obser‑
vations from the minority class). None of the presented classification errors take 
into account the consequences of dealing with imbalanced data. One of the pos‑
sible solution is to use a different performance measure based on sensitivity and 
specificity. These two measures are defined for the situation of two class classifi‑
cation problem, where one of the classes is labelled as “positive” and the other one 
as “negative”. After building the classification model we get a contingency table 
presented as Table 1.

Table 1. Contingency table for two class classification

Observed (true) class
positive negative

Predicted class positive TP (True Positives) FP (False Positives)
negative FN (False Negatives) TN (True Negatives)

Source: own results
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The sensitivity (or True Positives Rate, TPR) is defined as:

 
TPTPR

TP FN
=

+ . (2)

The specificity (or True Negatives Rate, TNR) is defined as:

 
TNTNR

FP TN
=

+
. (3)

The ROC (Receiver Operating Characteristics) curve is the base for measur‑
ing the accuracy of prediction. It is a widely used evaluation metric. ROC curve 
is formed by plotting TPR (sensitivity) vs FPR = 1 – TNR (one minus specificity) 
for different possible cut‑points of a classifier. Any point on ROC graph, corre‑
sponds to the performance of a single classifier on a given distribution. The op‑
timal point on the ROC curve is (FPR, TPR) = (0, 1) – no false positives and all 
true positives. So the closer we get there the better (Figure 1). The larger the area 
under ROC curve (AUC), the higher the accuracy (Altman, Bland, 1994; Misztal, 
2014). The measure AUC is equal to 0.5 for a random classifier and AUC = 1 for 
a perfectly classifying model. AUC of a classifier is equivalent to the probability 
that the classifier will rank a randomly chosen positive instance, higher than a ran‑
domly chosen negative instance.

Figure 1. ROC curve illustration
Source: own results
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In the regression case (i.e. iy R∈ ), the most often used model quality meas‑
ure is the mean squared error (MSE):

 ( ) ( )
| |

2

1

1 ( , ) ( ( )) .
| |

A
i i i i

i
MSE Q I y Q y f

Q =

= ∈ ⋅ −∑ x x  (4)

Similarly to the classification task, there are different versions of MSE de‑
pending on what is the dataset Q on which the measure is computed. Thus 
we get goodness‑of‑fit measure MSETRAIN and a few prediction ability measures: 
MSETEST, MSEb–CV, MSEOOB. For interpretational purposes root mean squared er‑

ror ( ) ( )RMSE Q MSE Q=  is often used. Another measure is mean absolute 
error:

 ( ) ( )
| |
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or mean absolute percentage error:
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or widely used as a goodness‑of‑fit measure (for Q = D) – determination coeffi‑
cient:
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Naturally there is also an adjusted version of determination coefficient ( )2R̂ Q  
which is a modified version of R2(Q) and it penalizes you for adding independent 
variables that do not affect the dependent variable.

These approaches are similar in methodological sense, since they are based 
on residuals and the only difference is mainly whether we use absolute or squared 
values. A slightly different approach is applied when using prediction quality in‑
dicator for proportion m ( (0,1)m∈ ):

 ( )
( ) ( )

| |

1
( , ) ( ) (1 ) , (1 )
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| |
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pred(m, Q) is simply the percentage of estimates that are within m · 100% of the 
actual value (Kitchenham et al., 2001). Typically m is set to 0.25, so the indica‑
tor reveals what proportion of estimates are within a tolerance of 25%. Clearly, 
pred(m, Q) is insensitive to the degree of inaccuracy of estimates outside the spec‑
ified tolerance level.

The presented list of model quality measures is not complete. There are also 
other measures, e.g.: Akaike or Bayesian information criterion (AIC, BIC), mean 
absolute scaled error (MASE) or Mallows’s Cp, but all these measures can be used 
in a specific context only, i.e. information criteria for parametric models only, 
MASE for time series only, and Mallows’s Cp for models of hierarchical structure. 
In this paper we focus on universal measures of model quality.

3. Procedure for model selection and evaluation 
using different quality measures

As mentioned in the introduction, building a model with good predictive power re‑
quires some internal parameters tuning. This choice of parameters’ values is usu‑
ally based on simulation study (e.g. b‑fold cross validation) with cross‑validated 
prediction error (for classification problem) and mean squared error (for regres‑
sion). The same measure is then used for assessing the quality of the final model. 
In this section we suggest to use different measures in the stage of model (param‑
eters) selection and the stage of model quality evaluation.

We consider three machine learning methods, that can be used both – for clas‑
sification and regression tasks: bagging (for detailed description see Hastie, Tib‑
shirani, Friedman, 2001: 246–247; Gatnar, 2008), random forest (Breiman, 2001; 
Rozmus, 2004) and Support Vector Machines (SVMs), (Vapnik, 1998; Trzęsiok, 
2006). These methods have the following parameters (crucial for the method per‑
formance) that need to be carefully chosen by the user [in the parenthesis we pres‑
ent the range of values searched for in the cross‑validation]:
1) for bagging: nbagg [in: 10, 20, 50, 80, 100] – the number of bootstrap rep‑

lications (i.e. the number of models in the ensemble) and minsplit [in: 2, 
3,…, 10] – the minimum number of observations that must exist in a node 
in order for a split to be attempted;

2) for random forest: mtry [in: 2 , , 2d d and d ] – number of variables ran‑
domly sampled as candidates at each split, nodesize [in: 1, 2,…, 10] – min‑
imum size of terminal nodes, and ntree [in: 1, 2,…, 10] – number of trees 
to grow (i.e. the number of models in the ensemble);
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3) for Support Vector Machines: kernel [‘polynomial’ or ‘radial’] – the 
kernel used in training and predicting; degree [in: 2, 3, 4] – parameter need‑
ed for kernel of type polynomial, gamma [in: 0.1, 0.5] – parameter needed 
for all kernels except linear, epsilon [in 0.01, 0.1] – epsilon in the insensi‑
tive‑loss function (regression case), cost [in 0.01, 0.1] – cost of constraints 
violation (regularization parameter).
In the procedure, the model selection stage was performed using b‑fold cross 

validation and for the final model we chose one which had:
1) the maximum value of the AUC measure in case of classification problems,
2) the maximum value of the pred(0.25, b – CV) measure in case of regression 

problems.
After choosing the suboptimal configuration of the parameters and building 

the final model, we evaluated the model quality using the standard measures:
1) the cross‑validated classification error εb–CV in case of classification problems,
2) the cross‑validated mean squared error MSEb–CV in case of regression problems.

We used the b‑fold cross validation technique with b = 10.

4. Examples illustrating the procedure

We present two empirical examples illustrating the procedure of using different 
measures for model selection and evaluation – one example for classification prob‑
lem and one for regression.

4.1. An example of the model selection and evaluation procedure 
applied to classification problem

To illustrate how the procedure described in Section 3 works in the classifica‑
tion problem we used a real‑world dataset german credit shared by prof. 
dr hab. Hans Hofmann from the Institute of Statistics and Econometrics, University 
of Hamburg. This dataset set is available in the UCI Repository of Machine Learn‑
ing Databases1 (University of California, Irvine). The dataset includes information 
about short term loans. The task is the classical credit scoring problem – given 
a dataset representing the credit history of 1000 bank customers, find the classi‑
fication function that would classify a new client into one of two groups: “good 
clients” who represent low credit risk and “bad clients” with high credit risk. This 
function should be an automatic support in the decision making process whether 

1 ftp://ftp.ics.uci.edu/pub/machine‑learning‑databases.
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or not to accept an application form for granting a loan. The general information 
about the analysed dataset is presented in Table 2.

Table 2. General information about the german credit dataset

No. of observations No. of input variables
interval nominal

1000 7 13
Source: own results

The set of input variables consist of: status of the checking account, loan du‑
ration in number of months, credit history (no credits taken, all credits paid back 
duly, delay in paying off in the past, other credits existing – not at this bank), pur‑
pose of the loan, credit amount, savings account/bonds, present employment since, 
instalment rate in percentage of disposable income, personal status and sex, other 
debtors/guarantors, present residence since, property, age in years, other instalment 
plans, housing, number of existing credits at this bank, job, no. of people being lia‑
ble to provide maintenance for, telephone, foreign worker. The dependent variable 
is a categorical one and has two levels: “good” and “bad”.

Because the dataset included some categorical inputs, these variables were 
transformed and represented by dummy variables. This option was required for 
SVMs only, since the tree based methods (bagging and random forest) can deal 
with categorical explanatory variables. Thus the objects in the analysed training 
set for SVMs were described by 7 interval input variables and 54 categorical pre‑
dictors (some of them – dummy variables).

Results for bagging
The procedure pointed out nbagg=100, and minsplit=4, as the best con‑
figuration (with the highest AUC10–CV = 0.6824) for bagging. This configuration 
is exactly the same when compared with parameters’ values obtained using εb–CV 
as a model selection criterion. In both cases the final model has εb–CV = 0.231 and 
εTRAIN = 0.064.

Results for random forest
We obtained the following parameters’ values as the outcome of the procedure for 
random forest (AUC10–CV = 0.6825): ntree=50, mtry=8, nodesize=5. The clas‑
sification errors for the final model are: εb–CV = 0.227 and εTRAIN = 0.019. The values 
of the parameters are different using εb–CV as a selection criterion: ntree=200, 
mtry=6, nodesize=2, but the cross‑validated classification error of the final 
model is very similar εb–CV = 0.224.
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Results for Support Vector Machines
We obtained the following parameters’ values as the outcome of the procedure for 
SVMs (AUC10–CV = 0.6886): kernel=polynomial, degree=2, gamma=0.1, 
cost=0.1. The classification errors for the final model are: εb–CV = 0.243 and 
εTRAIN = 0.05. This configuration is exactly the same when compared with param‑
eters’ values obtained using εb–CV as a model selection criterion.

4.2. An example of the model selection and evaluation procedure 
applied to regression problem

To illustrate how the procedure described in Section 3 works in the regression 
problem we used a real‑world dataset flats which was created on the basis of the 
information published by the portal oferty.net. The data represent a sales trans‑
actions from about 16 different real estate agencies in Warsaw. The dataset consists 
of 990 observations. The general information about the analysed dataset is pre‑
sented in Table 3.

Table 3. General information about the flats dataset

No. of observations No. of input variables
ratio ordinal nominal

990 4 1 2
Source: own results

The set of input variables consist of: distance to the central point of the city, 
number of rooms, year the property was built in, location (name of the city dis‑
trict), type of the ownership, condition of the apartment. The dependent variable 
is the price per 1 square meter the estate was sold for. Because of the missing val‑
ues problem, the dataset used in the analysis was reduced to 747 complete obser‑
vations. In the analysis with SVM, 22 dummy variables were introduced for the 
nominal ones.

Results for bagging
The procedure pointed out nbagg=80, and minsplit=3, as the best configura‑
tion (with the highest pred(0.25)b–CV = 0.0755) for bagging. In this case the mean 
squared errors of the final model are: MSEb–CV = 2.1245 and R2 = 0.7689. The values 
of the parameters differ from the ones that resulted from using MSEb–CV as a model 
selection criterion: nbagg=50, and minsplit=2, but the cross‑validated mean 
squared error of the final model is very similar MSEb–CV = 2.1005.
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Results for random forest
We obtained the following parameters’ values as the outcome of the procedure for 
random forest (pred(0.25)b–CV = 0.0642): ntree=200, mtry=4, nodesize=2. 
The mean squared errors for the final model are: MSEb–CV = 2.0016 and R2 = 0.9278. 
The values of the parameters are different using MSEb–CV as a model selection crite‑
rion: ntree=200, mtry=2, nodesize=2, but the cross‑validated classification 
error of the final model is again very similar MSEb–CV = 1.974.

Results for Support Vector Machines
We obtained the following parameters’ values as the outcome of the proce‑
dure for SVMs (pred(0.25)b–CV = 0.0817): kernel=polynomial, degree=2,  
gamma=0.1, cost=0.1, epsilon=0.1. The classification errors for the final mod‑
el are: MSEb–CV = 2.4358 and R2 = 0.5344. This configuration is exactly the same 
when compared to parameters’ values obtained using MSEb–CV as a model selec‑
tion criterion.

5. Conclusions

As a consequence of the No Free Lunch theorem, the search for the best classifi‑
cation or regression method is pointless (for all possible problems), because such 
method does not exist. Thus, the choice of modelling method and its parameters 
must be performed with due care. However, it seems reasonable to use different 
criterion when tuning the parameters and during the stage of evaluating the fi‑
nal (selected) model. In the paper we present an approach of using area under  
the ROC curve and prediction quality indicator as a model selection criterion in the 
first stage, for classification and regression problems respectively, and the stand‑
ard cross‑validated classification error and mean squared error in the latter stage 
(for classification and regression, respectively). As illustrated by the two examples, 
this approach can lead to different configuration of model parameters (different 
models), but the overall predictive ability of the final model does not differ much 
from the standard and widely used approach of using the same measure for mod‑
el selection and model evaluation. Both approaches give very similar results and 
the superiority of any of them cannot be proved (No Free Lunch theorem), but the 
proposed procedure has the methodological advantage, since we use independent 
criteria in the two crucial stages of modelling (model selection and model evalua‑
tion phase). If we agree that model evaluation should be performed independently 
from the stage of building the model (using observations that were not used in the 
modelling phase and also evaluation criteria that were not used when building  
the model), then the advantages of the presented procedure become clear.
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Wybrane metody pomiaru jakości modeli statystycznych

Streszczenie: Bardzo ważnym elementem procesu modelowania statystycznego jest etap oceny ja-
kości zbudowanego modelu. W zależności od wykorzystanej metody istnieje wiele różnych podejść 
do pomiaru jakości modelu. Pomiar ten może skupiać się na dopasowaniu do danych empirycznych 
albo może przede wszystkim uwzględniać zdolności prognostyczne modelu. Mierniki mogą być ab-
solutne albo względne. Zestaw mierników jakości modelu obejmuje liczną grupę propozycji, z których 
analityk musi wybrać najodpowiedniejszy do danej sytuacji. W artykule przedstawiono zestawienie 
mierników jakości modelu oraz sugestię używania innych mierników jakości na etapie wyboru wa-
riantu modelu oraz na etapie oceny jakości modelu końcowego.

Słowa kluczowe: jakość modelu, dopasowanie, błąd predykcji
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