Some Results Concerning Axioms for Equivalential Calculus

Authors

DOI:

https://doi.org/10.18778/0138-0680.2025.05

Keywords:

equivalential calculus, D-complete, R-complete, single axiom, condensed detachment

Abstract

One of the most important questions in the area of the equivalential calculus (EC) currently is the issue of the single shortest axiom. We show some new a single organic and inorganic axioms for EC which are either D-complete or R-complete. We also present a number of two-element sets of axioms which posses some special properties. Two matrix are also discussed, which exclude two formulas from the set of potential 2MP-complete axioms.

References

Y. Arai, On axiom systems of propositional calculi, XVII, Proceedings of the Japan Academy, vol. 42(4) (1966), pp. 351–354, DOI:https://doi.org/10.3792/pja/1195522032
Google Scholar DOI: https://doi.org/10.3792/pja/1195522032

M. Czakon, D-complete Single Axioms for the Equivalential Calculus with the rules D and R, Bulletin of the Section of Logic, vol. 53(4) (2024), pp. 479–489, DOI: https://doi.org/10.18778/0138-0680.2024.15
Google Scholar DOI: https://doi.org/10.18778/0138-0680.2024.15

W. Dudek, Algebras connected with the equivalential calculus, Mathematica Montisnigri, (1995), pp. 13–18.
Google Scholar

W. Dudek, Algebras motivated by the equivalential calculus, Rivista di matematica pura ed applicata, vol. 17 (1996), pp. 107–112.
Google Scholar

W. Dudek, Algebras inspired by the equivalential calculus, Italian Journal of Pure and Applied Mathematics, vol. 9 (2001), pp. 139–148.
Google Scholar

J. R. Hindley, BCK and BCI logics, condensed detachment and the 2-property, Notre Dame Journal of Formal Logic, vol. 34(2) (1993), pp. 231–250, DOI: https://doi.org/10.1305/ndjfl/1093634655
Google Scholar DOI: https://doi.org/10.1305/ndjfl/1093634655

J. R. Hindley, D. Meredith, Principal Type-Schemes and Condensed Detachment, The Journal of Symbolic Logic, vol. 55(1) (1990), pp. 90–105, URL: http://www.jstor.org/stable/2274956
Google Scholar DOI: https://doi.org/10.2307/2274956

K. Hodgson, Shortest Single Axioms for the Equivalential Calculus with CD and RCD, Journal of Automated Reasoning, vol. 20 (1998), pp. 283–316, DOI: https://doi.org/10.1023/A:1005731217123
Google Scholar DOI: https://doi.org/10.1023/A:1005731217123

J. A. Kalman, A shortest single axiom for the classical equivalential calculus, Notre Dame Journal of Formal Logic, vol. 19(1) (1978), pp. 141–144, DOI: https://doi.org/10.1305/ndjfl/1093888216
Google Scholar DOI: https://doi.org/10.1305/ndjfl/1093888216

J. A. Kalman, Condensed Detachment as a Rule of Inference, Studia Logica, vol. 42(4) (1983), pp. 443–451, DOI: https://doi.org/10.1007/bf01371632
Google Scholar DOI: https://doi.org/10.1007/BF01371632

S. Leśniewski, Grundzüge eines neuen Systems der Grundlagen der Mathematik, Fundamenta Mathematicae, vol. 14(1) (1929), pp. 1–81, DOI: https://doi.org/10.4064/FM-14-1-1-81
Google Scholar DOI: https://doi.org/10.4064/fm-14-1-1-81

J. Łukasiewicz, Równoważnościowy rachunek zdań, [in:] J. Łukasiewicz (ed.), Z zagadnień logiki i filozofii, Państwowe Wydawnictwo Naukowe, Warszawa (1939), pp. 234–235.
Google Scholar

C. A. Meredith, A. N. Prior, Notes on the axiomatics of the propositional calculus, Notre Dame Journal of Formal Logic, vol. 4(3) (1963), pp. 171–187, DOI: https://doi.org/10.1305/ndjfl/1093957574
Google Scholar DOI: https://doi.org/10.1305/ndjfl/1093957574

J. G. Peterson, Shortest single axioms for the classical equivalential calculus, Notre Dame Journal of Formal Logic, vol. 17(2) (1976), pp. 267–271, DOI: https://doi.org/10.1305/ndjfl/1093887534
Google Scholar DOI: https://doi.org/10.1305/ndjfl/1093887534

D. Ulrich, D-complete axioms for the classical equivalential calculus, Bulletin of the Section of Logic, vol. 34 (2005), pp. 135–142.
Google Scholar

M. Wajsberg, Ein neues Axiom des Aussaugenkalkül in der Symbolik von Sheffer, Monatshefte für Mathematik und Physik, vol. 39 (1932).
Google Scholar DOI: https://doi.org/10.1007/BF01699069

M. Wajsberg, Metalogische Beiträge, Wiadomości Matematyczne, vol. 43 (1937), pp. 131–168.
Google Scholar

L. Wos, D. Ulrich, B. Fitelson, Vanquishing the XCB question: The methodological discovery of the last shortest single axiom for the equivalential calculus, Journal of Automated Reasoning, vol. 28 (2002), pp. 107–124, DOI: https://doi.org/10.1023/A:1021693818601
Google Scholar DOI: https://doi.org/10.1023/A:1021693818601

L. Wos, D. Ulrich, B. Fitelson, XCB, The last of the shortest single axioms for the classical equivalential calculus, Bulletin of the Section of Logic, vol. 32(3) (2003), pp. 131–136.
Google Scholar

L. Wos, S. Winker, R. Veroff, B. Smith, L. Henschen, Questions concerning possible shortest single axioms for the equivalential calculus: An application of automated theorem proving to infinite domains, Notre Dame Journal of Formal Logic, vol. 24(2) (1983), pp. 205–223, DOI: https://doi.org/10.1305/ndjfl/1093870311
Google Scholar DOI: https://doi.org/10.1305/ndjfl/1093870311

Downloads

Published

2025-07-02

How to Cite

Czakon, M. (2025). Some Results Concerning Axioms for Equivalential Calculus. Bulletin of the Section of Logic, 54(3), 325–341. https://doi.org/10.18778/0138-0680.2025.05

Issue

Section

Article