On Involutive Weak Exchange Algebras

Authors

DOI:

https://doi.org/10.18778/0138-0680.2025.13

Keywords:

(involutive) Hilbert algebra, pre-Hilbert algebra, BCK, BE, GE algebra, (positive) implicativity, commutativity

Abstract

In this paper, involutive weak exchange algebras (for short, involutive WE algebras) are introduced and studied. Their properties and characterizations are investigated. Some important results and examples are given. In particular, it is proven that in involutive WE algebras, the properties (BB), (B), (*), (**) and (Tr) are equivalent. Moreover, involutive BE, involutive GE, involutive pre-BCK and involutive pre-Hilbert algebras are considered, their connections are established. It is shown that involutive WE algebras (respectively, involutive GE algebras) satisfying the commutative property are Wajsberg algebras (respectively, Boolean algebras). Finally, the interrelationships between the classes of involutive algebras considered here are presented.

References

R. K. Bandaru, A. Borumand Saeid, Y. B. Jun, On GE-algebras, Bulletin of the Section of Logic, vol. 50(1) (2021), pp. 81–96, DOI: https://doi.org/10.18778/0138-0680.2020.20
Google Scholar DOI: https://doi.org/10.18778/0138-0680.2020.20

R. Borzooei, A. Borumand Saeid, R. Ameri, A. Rezaei, Involutory BE-algebras, Journal of Mathematics and Applications, vol. 37 (2014), pp. 13–26.
Google Scholar DOI: https://doi.org/10.7862/rf.2014.2

D. Buşneag, S. Rudeanu, A glimpse of deductive systems in algebra, Central European Journal of Mathematics, vol. 8 (2010), pp. 688–705, DOI: https://doi.org/10.2478/s11533-010-0041-4
Google Scholar DOI: https://doi.org/10.2478/s11533-010-0041-4

A. Diego, Sur les algèbras de Hilbert, [in:] Collection de Logique Mathématique, Serie A, vol. 21, Gauthier-Villars, Paris (1966).
Google Scholar

J. M. Font, A. J. Rodrígues, A. Torrens, Wajsberg algebras, Stochastica, vol. 8(1) (1984), pp. 5–31, URL: http://eudml.org/doc/38902
Google Scholar

L. Henkin, An algebraic characterization of quantifilers, Fundamenta Mathematicae, vol. 37(1) (1950), pp. 63–74, URL: https://eudml.org/doc/213228
Google Scholar DOI: https://doi.org/10.4064/fm-37-1-63-74

Y. Huang, Some examples of involutory BCK-algebras, Demonstratio Mathematica, vol. 38(4) (2005), pp. 793–798, DOI: https://doi.org/10.1515/dema-2005-0403
Google Scholar DOI: https://doi.org/10.1515/dema-2005-0403

A. Iorgulescu, New generalizations of BCI, BCK and Hilbert algebras – Part I, Journal of Multiple-Valued Logic and Soft Computing, vol. 27(4) (2005), pp. 353–406.
Google Scholar

A. Iorgulescu, Asupra algebrelor Booleene (in Romanian) (2009), revista de Logică, URL: http://egovbus.net/rdl
Google Scholar

A. Iorgulescu, Algebras of logic vs. algebras, [in:] A. Rezuş (ed.), Contemporary logic and computing, vol. 1 of Landscapes in Logic, College Publications, London (2020), pp. 157–258.
Google Scholar

K. Iséki, An algebra related with a propositional culculus, Proceedings of the Japan Academy, vol. 42(1) (1966), pp. 26–29, DOI: https://doi.org/10.3792/pja/1195522171
Google Scholar DOI: https://doi.org/10.3792/pja/1195522171

K. Iséki, S. Tanaka, An introduction to the theory of BCK-algebras, Mathematica Japonica, vol. 23(1) (1978), pp. 1–26.
Google Scholar

H. S. Kim, Y. H. Kim, On BE-algebras, Scientiae Mathematicae Japonicae, vol. 66(1) (2007), pp. 113–128, DOI: https://doi.org/10.32219/isms.66.1_113
Google Scholar

Y. Komori, The separation theorem of the ℵ0-valued Łukasiewicz propositional logic, [in:] Reports of the Faculty of Science, vol. 12, Shizuoka University (1978), pp. 1–5, DOI: https://doi.org/10.32219/isms.66.1_113
Google Scholar

Y. Komori, Super-Łukasiewicz propositional logic, Nagoya Mathematical Journal, vol. 84 (1981), pp. 119–133.
Google Scholar DOI: https://doi.org/10.1017/S0027763000019577

A. Monteiro, Cours sur les algebres de Hilbert et de Tarski, Instituto de Matemática, Universuidad Nacional del Sur, Baía Blanca (1960).
Google Scholar

A. N. Prior, Formal Logics, 2nd ed., Oxford University Press, Oxford (1962).
Google Scholar

M. Wajsberg, Beiträge zum Mataaussagenkalkül, I, Manatshefte für Mathematik und Physik, vol. 42 (1935), pp. 221–242.
Google Scholar DOI: https://doi.org/10.1007/BF01733295

A. Walendziak, On commutative BE algebras, Scientiae Mathematicae Japonicae, vol. 69(2) (2008), pp. 585–588, DOI: https://doi.org/10.32219/ISMS.69.2_281
Google Scholar

A. Walendziak, The property of commutativity for some generalizations of BCK algebras, Soft Computing, vol. 23(17) (2019), pp. 7505–7511, DOI: https://doi.org/10.1007/s00500-018-03691-9
Google Scholar DOI: https://doi.org/10.1007/s00500-018-03691-9

A. Walendziak, On implicative and positive implicative of GE algebras, Bulletin of the Section of Logic, vol. 52(4) (2023), pp. 497–515, DOI: https://doi.org/10.18778/0138-0680.2023.21
Google Scholar DOI: https://doi.org/10.18778/0138-0680.2023.21

A. Walendziak, On pre-Hilbert algebras and positive implicative pre-Hilbert algebras, Bulletin of the Section of Logic, vol. 53(3) (2024), pp. 345–364, DOI: https://doi.org/10.18778/0138-0680.2024.07
Google Scholar

A. Walendziak, Exchange pre-Hilbert algebras and their connections with other algebras of logic, Italian Journal of Pure and Applied Mathematics, vol. 53 (2025), pp. 200–214, DOI: https://doi.org/10.18778/0138-0680.2024.07
Google Scholar DOI: https://doi.org/10.18778/0138-0680.2024.07

Downloads

Published

2025-11-28

How to Cite

Walendziak, A. (2025). On Involutive Weak Exchange Algebras. Bulletin of the Section of Logic, 54(3), 383–406. https://doi.org/10.18778/0138-0680.2025.13

Issue

Section

Article