Dialogical Ecumenism

Authors

DOI:

https://doi.org/10.18778/0138-0680.2025.12

Keywords:

dialogics, logical ecumenism, game-theoretic semantics, intuitionistic logic

Abstract

Ecumenical logics are systems where two logics can coexist, sharing vocabulary and avoiding collapses between them. The literature has focused mainly on ecumenism between classical and intuitionistic logic, and several calculi of Natural Deduction and Sequents have been proposed. In this paper I contribute to this project with a dialogical ecumenical system. This Game utilizes an extension of the intuitionistic structural rules that permits to handle classical disjunctions and conditionals. I show that this is indeed an ecumenical dialogical system, where classical formulas and intuitionistic formulas can be validated without collapses between them, and provide a philosophical defense of its design.

References

J. Alama, A. Knoks, S. L. Uckelman, Dialogue games in classical logic, [in:] M. Giese, R. Kuznets (eds.), TABLEAUX 2011: Workshops, Tutorials, and Short Papers, Technical Report IAM-11-002, Universität Bern (2011), pp. 82–86, URL: https://aleksknoks.com/wp-content/uploads/2020/09/TABLEAUX2011-OurPaper.pdf
Google Scholar

A. Blass, A game semantics for linear logic, Annals of Pure and Applied Logic, vol. 56(1) (1992), pp. 183–220, DOI: https://doi.org/10.1016/0168-0072(92)90073-9
Google Scholar DOI: https://doi.org/10.1016/0168-0072(92)90073-9

N. Clerbout, Étude sur quelques sémantiques dialogiques. Concepts fondamentaux et éléments de metathéorie, Ph.D. thesis, Leiden and Lille Universities (2014).
Google Scholar

N. Clerbout, Finiteness of plays and the dialogical problem of decidability, IfCoLog Journal of Logics and their Applications, vol. 1(1) (2014), pp. 115–130.
Google Scholar

N. Clerbout, Z. McConaughey, Dialogical Logic, [in:] E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, fall 2022 ed., Metaphysics Research Lab, Stanford University (2022), URL: https://plato.stanford.edu/entries/logic-dialogical/
Google Scholar

G. Dowek, On the definition of the classical connectives and quantifiers(2016), arXiv:1601.01782.
Google Scholar

M. Dummett, Elements of Intuitionism, vol. 37 of Oxford Logic Guides, Clarendon Press (2000).
Google Scholar DOI: https://doi.org/10.1093/oso/9780198505242.001.0001

W. Felscher, Dialogues, strategies, and intuitionistic provability, Annals of Pure and Applied Logic, vol. 28(3) (1985), pp. 217–254, DOI: https://doi.org/10.1016/0168-0072(85)90016-8
Google Scholar DOI: https://doi.org/10.1016/0168-0072(85)90016-8

J.-Y. Girard, On the unity of logic, Annals of Pure and Applied Logic, vol. 59(3) (1993), pp. 201–217, DOI: https://doi.org/10.1016/0168-0072(93)90093-S
Google Scholar DOI: https://doi.org/10.1016/0168-0072(93)90093-S

K. Gödel, Zur intuitionistischen Arithmetik und Zahlentheorie, Ergebnisse eines mathematischen Kolloquiums, vol. 4 (1933), pp. 34–38.
Google Scholar

S. Kleene, Introduction to Metamathematics, first printing ed., Bibliotheca Mathematica, North-Holland Publishing Co. (1952).
Google Scholar

P. Krauss, A Constructive Interpretation of Classical Mathematics, Mathematische Schriften Kassel, GhK, Gesamthochsch. Kassel (1992).
Google Scholar

P. Lorenzen, K. Lorenz, Dialogische Logik, Kurztitelaufnahme der Deutschen Bibliothek, Wissenschaftliche Buchgesellschaft, [Abt. Verlag] (1978).
Google Scholar

V. L. B. Nascimento, Ecumenismo lógico, Master’s thesis, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil (2018), DOI: https://doi.org/10.17771/PUCRio.acad.34598
Google Scholar DOI: https://doi.org/10.17771/PUCRio.acad.34598

L. C. Pereira, E. Pimentel, On an ecumenical natural deduction with stoup – Part I: The propositional case (2022), arXiv:2204.02199.
Google Scholar DOI: https://doi.org/10.1007/978-3-031-51406-7_7

L. C. Pereira, R. O. Rodriguez, Normalization, Soundness and Completeness for the Propositional Fragment of Prawitz Ecumenical System, Revista Portuguesa de Filosofia, vol. 73(3–4) (2017), pp. 1153–1168, DOI: https://doi.org/10.17990/rpf/2017733_1153
Google Scholar DOI: https://doi.org/10.17990/RPF/2017_73_3_1153

E. Pimentel, L. C. Pereira, V. De Paiva, An ecumenical notion of entailment, Synthese, vol. 198 (2021), pp. 5391–5413, DOI: https://doi.org/10.1007/s11229-019-02226-5
Google Scholar DOI: https://doi.org/10.1007/s11229-019-02226-5

D. Prawitz, Intuitionistic Logic: A Philosophical Challenge, [in:] G. H. Von Wright (ed.), Logic and Philosophy / Logique et Philosophie, Springer Netherlands, Dordrecht (1980), pp. 1–10, DOI: https://doi.org/10.1007/978-94-009-8820-0_1
Google Scholar DOI: https://doi.org/10.1007/978-94-009-8820-0_1

D. Prawitz, Classical versus intuitionistic logic, [in:] Why is this a Proof? Festschrift for Luiz Carlos Pereira, vol. 27 of Tributes, Stockholm University, Department of Philosophy (2015), pp. 15–32.
Google Scholar

S. Rahman, N. Clerbout, L. Keiff, On Dialogues and Natural Deduction, [in:] G. P. et alii (ed.), Acts of Knowledge: History and Philosophy of Logic, College Publictions. Tributes, College Publications (2009), pp. 301–336, URL: https://shs.hal.science/halshs-00713187
Google Scholar

S. Rahman, Z. McConaughey, A. Klev, N. Clerbout, Immanent Reasoning or Equality in Action: A Plaidoyer for the Player Level, Springer (2018), DOI: https://doi.org/10.1007/978-3-319-91149-6
Google Scholar DOI: https://doi.org/10.1007/978-3-319-91149-6

Downloads

Published

2025-11-28

How to Cite

Álvarez Lisboa, M. (2025). Dialogical Ecumenism. Bulletin of the Section of Logic, 54(3), 343–382. https://doi.org/10.18778/0138-0680.2025.12

Issue

Section

Article