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Abstract

We comment on certain features that second-level inference rules commonly used

in mathematical proof sometimes have, sometimes lack: suppositions, indirect-

ness, goal-simplification, goal-preservation and premise-preservation. The em-

phasis is on the roles of these features, which we call ‘perfumes’, in mathematical

practice rather than on the space of all formal possibilities, deployment in proof-

theory, or conventions for display in systems of natural deduction.

Keywords: Second-level inference, suppositions, indirect inference, goal simplifi-

cation, goal preservation, wlog, premise preservation.

1. Introduction

In logic, it is commonplace to distinguish between inferences of first and
second levels. In broad terms, a first-level inference passes from certain
statements serving as premises to a statement taken as conclusion. In
concise notation, it is of the type Γ ` γ, where γ is a statement and Γ is a
finite set of the same, with the sign ` indicating passage from one to the
other. A second-level inference, on the other hand infers the validity of an
entire argument from the validity of one or more other arguments. In the
same notation, it is of the form Γi ` γi(i ≤ n)/∆ ` δ where the slash marks
a step from the n subordinate inferences Γi ` γi on the left to the principal
one on the right. The former kind of inference can, of course, be regarded
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as the limiting case of the latter where n = 0, but here we will always be
considering the principle case that n ≥ 1.

Not only are these two levels formally distinct, but they also ‘smell’ quite
differently. One also senses differences within the second level; for exam-
ple, each of the rules of conditional proof (CP,→+), reductio ad absurdum
(RAA), disjunctive proof (DP,∨+), universal generalization (UG,∀+) and
existential instantiation (EI,∃−) has its own intuitive feel or, as we shall
say, its ‘perfume’. This article is about such perfumes, which can be de-
fined quite precisely. We will see how a second-level inference-rule may be
(or fail to be) suppositional, indirect, goal-simplifying, goal-preserving or
premise-preserving, in senses to be defined, discuss why these features can
be useful in practice, and draw attention to a connection with without loss
of generality (wlog) reasoning.

Some disclaimers may forestall misunderstanding. There are no theo-
rems, no philosophical messages or agenda. We are not interested in the
space of all mathematically possible forms of second-level proof, but with
steps that, arguably, one finds in everyday mathematical reasoning. Since
that proceeds in accord with classical logic, it is the only kind of logic
to concern us, not free, intuitionistic, relevance-sensitive, paraconsistent,
fuzzy or any other variety. Nor are we concerned with the various dis-
play systems that have been devised in textbook presentations of natural
deduction (see the overviews in e.g. [10], [3, chapter 2], [11]). The text
merely offers an organized review of folklore about inferential practice; in
the more pretentious language of our title, it is a foray in the phenomenol-
ogy of second-level inference.

As is well known, any second-level inference rule Γi ` γi(i ≤ n)/∆ ` δ
may equivalently be presented as what has been called a ‘split-level’ rule
∆; Γi ` γi(i ≤ n)/δ, where the premise-set ∆ of the principal inference is
moved to the left of the slash (cf. [8, chapter 10]). In the split-level version
the conclusion is thus a proposition δ (as in a first-level rule), which is
obtained from a set ∆ of propositions (again like the first level) that is,
however, accompanied by the inferences Γi ` γi (as for the second level).
Arguably, this is the form that corresponds most closely to inferential prac-
tice and to what is done in systems of natural deduction. The present text
could be written using either idiom; we have chosen the second-level one
because it is a little easier to read and more familiar to readers.

Throughout, we use the terms ‘proof’, ‘inference’ and ‘argument’ in-
terchangeably according to the whims of style; similarly with ‘subordinate



The Phenomenology of Second-Level Inference. . . 329

inference’ and ‘sub-proof’, ‘statement’ and ‘proposition’ (understood in a
broad sense, as possibly containing free variables), ‘supposition’, ‘assump-
tion’, and ‘hypothesis’, while recognizing that in other contexts it can be
useful, even essential, to make distinctions between them. Table 1, at the
end of the paper, keeps track of the discussion.

2. Suppositions

Do second-level proofs have anything in common apart from the general
type Γi ` γi(i ≤ n)/∆ ` δ mentioned above? It is tempting to say that, in
every instance, each of the subordinate inferences Γi ` γi makes a suppo-
sition (also called assumption or hypothesis); in other words, that for all
i ≤ n, there is a statement α with α ∈ Γi but α 6∈ ∆.

That is almost true but, notoriously, not quite. There is a very im-
portant form of second-level inference, with just one subordinate inference,
that makes no supposition, namely universal generalization (UG,∀+):

UG : Γ ` γ/Γ ` ∀x(γ), when x has no free occurrences in Γ.

Here the premise-set Γ of the unique subordinate inference Γ ` γ is exactly
the same as that of the principal inference Γ ` ∀x(γ), nothing more, nothing
less.

From a heuristic point of view, the presence of a supposition in a subor-
dinate argument gives it one more item to grab and deploy, so the absence
of a supposition means that it foregoes that bonus. But UG has another
feature that tends to compensate: it is ‘goal-simplifying’, in the sense that
the conclusion γ of its subordinate argument is simpler, in its logical struc-
ture, than the conclusion ∀x(γ) of the principal argument. We will return
to goal-simplification in section 4.

All other rules for logical connectives in Table 1 are suppositional, as
can be seen by inspection. For disjunctive proof,

DP,∨− : Γ ∪ {α} ` γ; Γ ∪ {β} ` γ/Γ ∪ {α ∨ β} ` γ,

the suppositions are α, β. Another form of disjunctive proof widely used
in informal practice, sometimes called proof by cases, is DPx : Γ, α ` γ;
Γ,¬α ` γ/Γ ` γ, where the suppositions are α,¬α. For existential instan-
tiation, the supposition is α:
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EI, ∃− : Γ ∪ {α} ` γ/Γ ∪ {∃x(α)} ` γ, when x has no free
occurrences in Γ, γ.

For the two forms of conditional proof in Table 1, the suppositions are
respectively α,¬γ:

CPa,→+: Γ ∪ {α} ` γ/Γ ` α→ γ

CPb,→+: Γ ∪ {¬γ} ` ¬α/Γ ` α→ γ.

For reductio ad absurdum, the supposition is ¬α in each of the two subor-
dinate arguments of RAAa, as also in the unique subordinate argument of
RAAb:

RAAa : Γ ∪ {¬α} ` γ; Γ ∪ {¬α} ` ¬γ/Γ ` α

RAAb : Γ ∪ {¬α} ` α/Γ ` α.

We have distinguished between two forms of CP , and two forms of RAA,
because they disagree on other perfumes to be considered later. On the
other hand, we do not distinguish between the above forms of RAA and
those obtained by inverting the positive and negative occurrences of α. Al-
though the latter distinction is important for intuitionistic logic, we remain
in the classical domain and it turns out that the inverted forms agree with
the above ones on all perfumes considered.

What about connective-free (sometimes called structural) rules? Re-
flexivity is connective-free, but first-degree, while both monotony and cu-
mulative transitivity are second-degree:

Monotony : Γ ` γ/Γ ∪∆ ` γ,

CT : Γ ` γ; Γ ∪ {γ} ` δ/Γ ` δ.

Their status is rather special, in inferential practice as much as in logical
theory. They are less visible than the rules for connectives in everyday
mathematical reasoning, as well as in systems of natural deduction, because
they are rarely rendered explicit when applied. In effect, they are implicit
in the very structure of a deduction as it develops, whether in the usual
linear fashion or in tree form. Moreover, in the present author’s view,
their connections with the various perfumes that we are considering are
less interesting than in the case of rules for connectives. For these reasons,
we settle on a compromise: the behaviour of these two rules with respect



The Phenomenology of Second-Level Inference. . . 331

to each perfume is recorded in Table 1 (last two rows), but not discussed
further in the text.

The following remarks may help put this bare picture in perspective.

History. It is interesting to recall that Jaśkowski, in his seminal paper
of 1934 ([5]), appears to have been reluctant to accept that there are second-
level inferences without suppositions. The title of his paper is “On the rules
of suppositions in formal logic”. When presenting UG, he introduces its
subordinate inference by writing Tx on a new line, explaining that T “is
here a new constant analogous to the symbol of supposition S” (section 5,
page 29).

To be sure, choosing an item arbitrarily by declaring a fresh variable
does have some resemblance to the act of making a supposition. This is
reflected in the language used: in English, at least, both “let x be...” and
“suppose that...” are in the imperative rather than the indicative mood.
But they are not quite the same action, and a ‘semi-supposition’ display
risks obscuring the difference.

In effect, we can read Jaśkowski’s Tx entry in either of two ways. On
one reading, which is rather confusing, it articulates the constraint on the
variable x, which is a condition in the metalanguage, as if it were an addi-
tional premise of the subordinate inference. On another reading, it merely
announces that one is about to enter a subordinate argument and that one
intends to generalize on the variable x when leaving it – which is what
is also done by the informal mathematical phrase “let x be an arbitrary
so-and-so”. However, giving Tx a line number in a derivation may not be
the most transparent way of signalling that reading.

In any case, the Tx notation was not used in the independently con-
ceived work of Gentzen [1], which was much more influential for theoretical
investigations of mathematical logicians. And although Jaśkowski’s paper
was, directly or indirectly, a basic inspiration for textbook accounts of natu-
ral deduction for students of philosophy in the second half of the twentieth
century, few of them adopted this part of his notation, one well-known
exception being, however, [6] (cf. [4]).

Flattening. On the other hand, textbooks presenting systems of natu-
ral deduction often streamline displays by “flattening” UG, that is, trans-
forming it into a step that is first-level, but procedural rather than infer-
ential. The rule is articulated as authorizing passage from a proposition γ
to the corresponding proposition ∀x(γ) under the proviso that x does not
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occur free in any of the premises or suppositions on which γ depends in the
deduction under construction. That the passage is procedural rather than
inferential is evident from the fact that in general γ 6|= ∀x(γ), irrespective
of whether the proviso is satisfied. It is only when we reflect on the ra-
tionale for the proviso that we can begin to see the second-level inference
underlying the procedural step.

While such flattening simplifies the formal display of a natural deduc-
tion, in the present author’s view it runs a danger of obscuring what is
really going on. Given that we have deduced γ from various premises and
suppositions (the Γ in the rule) in which x does not occur free, UG autho-
rizes us to conclude ∀x(γ) on the basis of those same propositions. That is
second-level and the student should brought to realize it, and not allowed to
forget it. In particular, UG should not be confused with the first-level and
genuinely inferential step of vacuous generalization V G : γ/∀x(γ) whenever
x has no free occurrences in γ.

Universal generalization is not the only second-level rule that systems of
natural deduction like to flatten. Even more so is existential instantiation
which, we recall, tells us: Γ∪{α} ` γ/Γ∪{∃x(α)} ` γ, when x has no free
occurrences in Γ, γ. This is treated as authorizing passage (again, procedu-
rally, but not inferentially) from a proposition ∃x(α) to the corresponding
proposition α, under a suitable condition. The precise formulation of that
condition varies with the conventions of the particular natural deduction
system, but its essential content is that x does not occur free in any of the
premises or suppositions on which ∃x(α) depends, nor on any conclusion
that is subsequently derived from α. This reference to premises and conclu-
sions again alerts us to the fact that that there is a second-level inference
underlying the first-level procedural step.

Colloquial mathematical reasoning with EI also flattens it, in a less
formal way. In a proof, having reached a proposition ∃x(α), where α con-
tains x free, one simply says “choose any one such x” and works on α,
taking care not to use the same variable x for anything else until the proof
is complete. The second-level nature of the manoeuvre is thus left implicit,
and perhaps corresponds more closely to a variant of EI, namely the rule
Γ ` ∃x(α),Γ∪{α} ` γ/Γ ` γ, under the same proviso that x has no free oc-
currences in Γ, γ. There is more on ‘flattening’ second-level and split-level
rules in [8, section 10.3.3].
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Making UG suppositional. It is also possible to reformulate UG to ren-
der it suppositional. We may add to the premise-set Γ of the subordinate
inference Γ ` γ, as a supposition, either ¬γ, or a tautology of classical
propositional logic such as p ∨ ¬p, or a theorem of first-order logic such as
a = a, without needing actually to use it. The modified rule remains classi-
cally correct and one can carry out the same derivations as before without
change. Systems of natural deduction that proceed this way, for classical
and non-classical logics, are discussed in [3]. But, in the classical context,
why bother unless one thinks that there is something philosophically wrong
about second-level inference without a supposition? The manoeuvre does
not correspond to mathematical practice and detours through an idle or
artificially employed assumption.

The “let x be...” locution. In practice, when one uses a phrase like
‘Let x be an arbitrary so-and-so’ (say, an arbitrary equilateral triangle) the
‘so-and-so’ condition almost always identifies a class that is more restricted
than the entire universe of discourse under consideration (say, the class of
points, lines and figures on a plane). This is because we are doing two things
at the same time. We are trying to prove, from given information Γ (say,
the axioms of plane geometry), a general conditional ∀x(ϕ(x) → ψ(x)).
To that end, we begin by establishing ψ(x) from Γ ∪ {ϕ(x)} and then
carry out two second-level steps. The first applies CP to conclude that
Γ ` ϕ(x) → ψ(x), to which the second applies UG, under the condition
that x does not occur free in Γ, to conclude that Γ ` ∀x(ϕ(x)→ ψ(x)). To
streamline the argument, the two steps are customarily run together.

Non-classical logics. Although we are concerned only with classical
reasoning, we note in passing that supposition-free second-level inference
rules also appear in some well-known non-classical logics, notably for intro-
ducing the box connective in natural deduction systems for the modal logic
S5 and some of its sub-logics, as well as for logics of relevance-sensitive con-
ditionals when those conditionals are understood as conveying some kind
of necessity (as is the case for the relevance logic E, but not for R).

For S5, that is not really anything new since its box can be seen as
shorthand for a universal quantifier with a single fixed variable x. Specif-
ically, modal formulae can be translated to classical first-order formulae
with monadic predicates: fix a variable x, associate injectively each sen-
tence letter p with a one-place predicate letter P , put T (p) = P (x) for
sentence letters (always with the fixed choice of variable x), translate truth-
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functional connectives into themselves, and put T (�α) = ∀xT (α). When
the S5 rule �+ is expressed in the form Γ ` γ/Γ ` �γ under the pro-
viso that no sentence letter in γ occurs unmodalized in Γ, it corresponds
to classical UG. In this way, UG can be seen as the ultimate source of
supposition-free second-level rules in S5 and thus also, indirectly, in some
of its subsystems.

3. Indirectness

The best-known of the perfumes, used and discussed since Greek antiquity,
is indirectness. As it has received so much attention, we will be very brief.

Often, reductio ad absurdum alone is counted as indirect, but it seems
reasonable to include contrapositive conditional proof under this name, as
is sometimes done. Accordingly, we define a second-level inference form
Γi ` γi(i ≤ n)/∆ ` δ to be indirect iff each subordinate argument has a
supposition that negates (or is negated by) the conclusion (or the conse-
quent of the conclusion) of the principal argument. Indirect inferences are
thus by definition a particular type of suppositional inference. Inspection
tells us that in this sense RAAa, RAAb and CPb are indirect, while the
other argument-forms in Table 1 are direct.

Reductio often permits very short and elegant arguments; see e.g. [7,
section 2.3] for a collection of examples. In the present author’s view, this
is not so much due to the manipulation of negation as to the fact, that it is
both suppositional and, at least for the more elegant applications of RAAa,
goal-simplifying in the sense defined in section 2 and discussed further in
the section 4. On the negative side, reductio proofs for ∀∃ statements
are sometimes non-constructive (no witness provided for the existential
quantification) which, notoriously, makes them unfriendly to computation;
it has also sometimes given rise to philosophical doubts about its legitimacy
(see e.g. [12]).

For CPb, where the desired conclusion is of the form α→ β, the inferen-
tial convenience of ¬β as a supposition with ¬α as goal in the subordinate
inference can be greater, less, or about the same as, that of a corresponding
application of CPa where α is supposition and β is goal, depending on the
internal logical structure of those propositions.

The extent to which mathematicians use indirect inference is partly a
matter of personal style. Reticence about CPb is not common, but some
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prefer not to bring in the reductio artillery except when it provides major
benefits. On the other hand, others deploy it routinely. A mixed strategy
is to give an indirect inference if it is succinct and, if a witness is missing or
computation blocked, accompany it by a longer and perhaps more intricate
constructive argument, if one can be found.

Of course, direct second-level inference forms can always be rendered
indirect. For example, the first trick mentioned in section 2 for making UG
suppositional, adding ¬γ to the premises of the subordinate inference Γ ` γ,
at the same time makes it indirect. However, as mentioned there, this
manoeuvre does not correspond to mathematical practice, being artificial
with an unnecessary detour. One occasionally sees a less generic, but more
interesting, indirect variant of DP that eliminates one of the two disjuncts,
namely the rule: DPy : Γ∪{α} ` γ; Γ∪{β} ` δ; Γ∪{β} ` ¬δ/Γ, α∨β ` γ.
However, from a conceptual point of view, we see this as a combination
of standard DP with reductio and, for this reason, do not include it in
Table 1.

Why, then, have we given CPb a seat at that table, since it too can
be seen as conceptually composite, a combination of CPa with a first-level
inference? The reason is practical rather than formal: CPb is extremely
common in everyday mathematical reasoning, while the indirect form of
disjunctive proof is very much less so. But nothing prevents the reader
from extending Table 1 with rows for rules such as DPy, DPx (section 2)
or any other second-level inference forms that can reasonably claim to be
deployed in inferential practice.

4. Goal-simplification

In section 2, we observed in passing that although UG is not suppositional,
it is conclusion-simplifying (more briefly, goal-simplifying), in the sense that
the conclusion γ of the subordinate argument is strictly logically simpler
than the conclusion ∀x(γ) of the principal argument. Evidently, this prop-
erty facilitates inference, by reducing the complexity of what we have to
prove.

Not many patterns of second-level inference in everyday mathematical
reasoning have this property. DP and EI fail it, as the conclusions of their
subordinate inferences are the same as the conclusions of their respective
principal inferences, thus not strictly simpler. On the other hand, con-
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ditional proof is a big goal-simplifier. This is patently so in the case of
CPa, where the conclusion β of the subordinate inference is only the con-
sequent of the conclusion α→ β of the principal one. It is less clear for the
contrapositive version CPb, for the negation sign in the conclusion ¬α of
the subordinate inference does not appear in the conclusion α → β of the
principal one. However, the elimination of the arrow intuitively compen-
sates for the addition of a negation: we can understand logical complexity
in a way that gives arrows more weight than negations (as is sometimes
done when defining the notion of a subformula for inductive arguments in
proof-theory), thereby also treating CPb as goal-simplifying.

RAAa is not in general a goal-simplifier, but it is so in some instances.
The conclusions γ,¬γ of the two subordinate arguments may have any
complexity at all compared to the conclusion α of the principal inference
but, in practice, they are often simpler. As we are concerned with practice
as well as form, we put 0/1 in this cell of Table 1.

Thus, conditional proof in both forms CPa, CPb and RAAa (in some
of its applications) are the only second-level inference rules of Table 1 that
are both suppositional and goal-simplifying. The additional power brought
by the availability of a supposition, combined with the reduced complexity
obtained by goal-chipping, iterated as many times as occasion arises, can
transform a complex inferential task into a trivial one. That is surely part
of the reason why those three rules are such great work-horses, stars of the
second-level stable.

5. Goal-preservation and wlog reasoning

Call a second-level inference rule Γi ` γi(i ≤ n)/∆ ` δ conclusion-preser-
ving (briefly, goal-preserving) iff γi = δ for all i ≤ n. By definition, the goal-
preserving rules are disjoint from the goal-simplifying ones, which make the
conclusion strictly simpler. They are also disjoint from the indirect ones,
which radically modify the conclusion. Clearly, DP , EI and RAAb are
goal-preserving while UG, CPa, CPb and RAAa are not.

Thus, all of the goal-preserving rules for connectives that we consider
in Table 1 turn out to be suppositional. To find a non-suppositional goal-
preserving rule, one can turn to the connective-free rule of monotony. In-
deed, that is essentially the only manner in which the combination can
hold for, quite generally, a second-level rule Γi ` γi(i ≤ n)/∆ ` δ that is
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non-suppositional must have some Γj ⊆ ∆ while, if it is goal-preserving, it
must put each γi = δ. Thus, it must be of the form Γj ` δ; Γi ` δ(j 6= i ≤
n)/Γj∪Γ′ ` δ, which is just monotony possibly accompanied by additional,
but redundant, subordinate inferences.

Goal-preservation underlies a kind of reasoning that is familiar in math-
ematical practice but seldom discussed in logic textbooks. It is typically
introduced by a such as “assume without loss of generality that...”, abbre-
viated as “assume wlog that...”. This tells us that we are making a sup-
position in a (single) subordinate inference, with conclusion unchanged. In
general, the assumption is mathematically substantive.

A well-known example arises when one is working with well-ordered
sets. In that context, a standard wlog move is to say, when there is an x
with a certain property, that we can choose such an x and assume wlog
that it is least among them (or minimal among them, in the more general
case of well-founded sets).

Although content-specific, this example has an interesting parallel with
the logical rule EI. It may be understood as a second-level inference pat-
tern that is available when Γ tells us, inter alia, that the domain of discourse
is well-founded by a relation <:

EI< : Γ, α< ` γ/Γ,∃x(α) ` γ, when x has no free occurrences in Γ, γ.

Here α< abbreviates α ∧ ¬∃y(y < x ∧ αx:=y), where αx:=y is the result of
substituting a variable y not occurring in α, γ or Γ, for all free occurrences
of x in α. The only difference between this and EI as formulated earlier,
is that α< replaces α as premise of the subordinate inference. Trivially,
α< |= α, so EI< is more powerful than plain EI. It can be regarded as
running EI together with modus ponens in the context of a well-founded
domain, that is, where Γ |= ∃x(α) → ∃x(α<). The merging can render
presentation more elegant; in particular, it often permits us to halve the
number of different variables that are needed for clear exposition.

While the above example of wlog reasoning is closely related to EI,
there are many others that appear to be less so. For example, if we want
to show that every Boolean algebra has a certain property that we know
to be preserved under Boolean isomorphisms, then we may consider an
arbitrary Boolean algebra B and assume without loss of generality that it
is a field of sets. This is because we have a representation theorem telling
us that every Boolean algebra is isomorphic to some field of sets. However,
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care needs to be taken since, notoriously, some interesting properties of
Boolean algebras are not preserved under isomorphisms, for example, the
property of infinite distributivity (see e.g. [13, section 35]).

In this example, the parallel with EI reappears if the wlog step is made
in the course of an indirect proof: supposing that there is a Boolean algebra
B that lacks a certain property, we seek a contradiction; if the property is
preserved under isomorphism, then we may suppose wlog that B is a field
of sets, and continue to contradiction from there.

For examples further away from logic and set theory, see e.g. [2]. For
aficionados of non-classical logic, there is an interesting use of a wlog pro-
cedure in the construction of relevance-sensitive truth-trees. When the
arrow connective is understood as relevance-sensitive, then decomposition
of ¬(ϕ → ψ) into ϕ,¬ψ on a branch of a decomposition tree is no longer
an act of first-level inference, as it is for classical truth-trees; it is a wlog
second-level step. See [8, chapter 11], with a more detailed account in [9].

6. Premise-preservation

Evidently, one may define a dual to goal-preservation. Call a second-level
inference rules Γi ` γi(i ≤ n)/∆ ` δ premise-preserving iff ∆ ⊆ Γi for all
i ≤ n. In [8, chapter 10], this property was called “incrementality”.

Inspection of the rules in Table 1 shows that UG, CT , CP (both forms)
and RAA (both forms) are premise-preserving. On the other hand, EI and
DP are not since, in general, ∃x(α) 6∈ Γ∪{α} and α∨β 6∈ Γ∪{α},Γ∪{β}.

On the other hand, the rather special form of DP that we called DPx
(section 2) is premise-preserving. Moreover, since trivially α |= α ∨ β,
β |= α ∨ β, α |= ∃x(α), both DP and EI may both be formulated in
equivalent, but redundant, ways that are premise-preserving:

Γ ∪ {α ∨ β} ∪ {α} ` γ; Γ ∪ {α ∨ β} ∪ {β} ` γ /Γ ∪ {α ∨ β} ` γ

Γ ∪ {∃x(α)} ∪ {α} ` γ /Γ ∪ {∃x(α)} ` γ, when x has no free
occurrences in Γ, γ.

To mark the fact that these variant formulations of DP , EI are premise-
preserving while the standard forms are not, we write 0, 1 in the corre-
sponding cells of Table 1.

It is perhaps not immediately obvious, as it was with suppositionality
and goal simplification, how premise preservation can be of assistance in
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Table 1. Selected perfumes for familiar second-order rules

Supposi-
tional

Goal-
simpli-
fying

Indirect

Goal-
preser-
ving

Pre-
mise-
preser-
ving

UG,∀+ 0 1

0

0 1

DP,∨−

1

1
0, 1

EI, ∃− 0, 1

CP,→+ CPa
1

0
0CPb

1
RAA

RAAa 0/1

RAAb 0 1

Monotony
0 0 0

1 0

CT 0 1

The entries 0/1 and 0, 1 in certain cells are explained in the corresponding sections. The

acronym EI is for “existential instantiation”; the reader should be warned that some

textbook presentations of natural deduction use the same acronym for the first-level

rule of “existential introduction”.

the business of deduction. We suggest that it can be helpful, illustrating
with the premise-preserving rule CPa. Consider a situation where we are
working within a mathematical theory that is axiomatized by a set Γ of
propositions, from which a considerable number of consequences have been
derived by many hands over a long period of time, and that we wish to
prove a conditional proposition α→ γ. We take α as a supposition and seek
to get γ from it, making free use of anything that has already been obtained
from Γ. If we succeed, then we can apply CPa (along with implicit appeal
to cumulative transitivity and monotony) and we are done.
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But what would the situation be like if instead of CPa : Γ ∪ {α} `
γ/Γ ` α → γ we had a rule Γ′ ∪ {α} ` γ/Γ ` α → γ that is not-premise-
preserving, that is, where Γ 6⊆ Γ′? When carrying out the subordinate
inference Γ′ ∪ {α} ` γ, we would not know, without re-checking, which of
the many theorems already deduced from Γ are also available for use in
the sub-proof. In cases where there are elements of Γ that are not trivially
implied by Γ′, that checking could be arduous indeed.

7. Conclusion

Second-level inference rules come with or without various features that we
have dubbed ‘perfumes’: suppositionality, indirectness, goal-simplification,
goal-preservation and premise-preservation. The presence of these per-
fumes tends to confer practical advantages in the articulation and commu-
nication of mathematical inference, each perfume with its own advantage.
Familiar rules of mathematical practice, as recorded in Table 1, all have at
least one of the perfumes, sometimes more. Conditional proof in both its
direct and contraposed forms (CPa,CPb) as well as reductio ad absurdum
in its standard form (RAAa), are particularly well endowed in this respect,
which may explain why they are such great work-horses. Goal-preservation
is also an essential part of wlog reasoning in mathematics, with some ex-
amples having analogies to EI.
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