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L-MODULES

Abstract

In this paper, considering L-algebras, which include a significant number of

other algebraic structures, we present a definition of modules on L-algebras (L-

modules). Then we provide some examples and obtain some results on L-modules.

Also, we present definitions of prime ideals of L-algebras and L-submodules

(prime L-submodules) of L-modules, and investigate the relationship between

them. Finally, by proving a number of theorems, we provide some conditions for

having prime L-submodules.

Keywords: L-algebra, L-module, L-submodule, prime L-submodule.

2020 Mathematical Subject Classification: 06F15, 03G25.

1. Introduction

In the study of set-theoretical solutions of the Yang-Baxter equation, the
cycloid equation, (x · y) · (x · z) = (y · x) · (y · z), plays a fundamental role,
see for example [6, 15]. Finding a solution to the Young-Baxter equation is
a research topic for many authors. Rump’s research in order to find a solu-
tion for that equation led to the introduction of L-algebras [16]. L-algebras
are related to algebraic logic and quantum structures. They are closely
related to non-classical logical algebras and quantum Yang-Baxter equa-
tion solutions. It was shown that many non-classical logical algebras can
be unified into L-algebras. For instance, the pseudo MV-algebras can be
characterized as semiregular L-algebras with negation [21]; Orthomodular
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lattices can be characterized as L-algebras [20], and every lattice-ordered
effect algebra gives rise to an L-algebra [19]. Also, Rump showed that an
L-algebra can be represented as an interval in a lattice ordered group if
and only if it is semiregular with an smallest element and bijective nega-
tion [18]. In short, there are effective relationships between L-algebras and
other algebraic structures. For example, we can consider them as Hilbert
algebras, locales, hoops, pseudo MV -algebras, etc. Other recent results on
the structure of the category of L-algebras can be found in [8].
Discussions about modular structures on algebraic structures have long
been of interest to scientists. For instance, the notion of BCK-module was
introduced in 1994 as an action of a BCK-algebra over a commutative group
[2], and it was extended in 2014 [3]; The notion of MV-modules was intro-
duced as an action of a PMV-algebra over an MV-algebra in 2003 [1]; Also,
the notion of MV -semimodules was introduced in 2013 [14], and the new
definition of MV -semimodules was presented in 2021 [13]. As mentioned,
there are effective connections between most algebraic structures. These
connections show a relationship between the modular structures associated
with these algebras. L- Algebras under conditions can be equivalent to
other algebras such as BCK-algebras, MV -algebras, etc. Considering that
we have spent a relatively large amount of time studying modular struc-
tures (for instance, see [3, 4, 9, 10, 11, 12, 13]), in order to complete and
consolidate our study in this field, we have decided to define L-modules
as an action of an L-algebra over an Abelian group. We hope that this
definition can help us to clarify the structure of L-algebras.

2. Preliminaries

In this section, we review the material that we will use in the paper.

Definition 2.1 ([7]). An L-algebra is an algebra (L;→, 1) of type (2, 0)
satisfying

(L1) x → x = x → 1 = 1, 1 → x = x;

(L2) (x → y) → (x → z) = (y → x) → (y → z);

(L3) x → y = y → x = 1 implies x = y, for all x, y, z ∈ L.

The relation x ≤ y if and only if x → y = 1, defines a partial order for any
L-algebra L. If L admits a smallest element 0, then it is called a bounded
L-algebra.
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Moreover, in the bounded L-algebra L, if the map ′ : L −→ L defined, by
x −→ x′ = x → 0 for every x ∈ L, is bijective, then we say that L has
negation.

Definition 2.2 ([17]). A KL-algebra is an L-algebra (L,→, 1) such that

x → (y → x) = 1 (K)

for every x, y ∈ L.
A CL-algebra is an L-algebra (L,→, 1) such that

(x → (y → z)) → (y → (x → z)) = 1 (C)

for every x, y, z ∈ L.

Definition 2.3 ([16]). Let (L;→, 1) be an L-algebra. Then a subset K of
L is called an L-subalgebra if x → y, y → x ∈ K, for all x, y ∈ K.
A subset I of L is called an ideal if the following hold for all x, y ∈ L:

(I1) 1 ∈ I,

(I2) x, x → y ∈ I implies y ∈ I,

(I3) x ∈ I implies (x → y) → y ∈ I,

(I4) x ∈ I implies y → x, y → (x → y) ∈ I. Denote by ID(L) the set of
all ideals of L.

If L satisfies condition (K), then (I4) can be omitted. Also, if L satisfies
condition (C), then , (I3) and (I4) can be omitted.

Definition 2.4 ([5]). For every subset Y ⊆ L, the smallest ideal of L
containing Y (i.e. the intersection of all ideals I ∈ ID(L) such that Y ⊆ I)
is called the ideal generated by Y and it will be denoted by [Y ). If Y = {x}
we write [x) instead of [{x}). In this case [x) is called a principal ideal of L.

3. L-modules

In this section, we present our definition of L-modules, and obtain some
results on them. Then we introduce the concepts of L-submodules and
prime L-submodules in L-modules. Finally, we investigate some conditions
for having a prime L-submodule.
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Note. If L is an L-algebra, then we denote (l → u) → u by l ↑ u, for
every l, u ∈ L.

Definition 3.1. Let L = (L;→, 0, 1) be a bounded L-algebra, and M =
(M,+) be an Abelian group. Then M is called an L-module, if there is an
operation · : L×M −→ M by (l,m) 7−→ l ·m such that for every l, u ∈ L
and m,n ∈ M , we have:

(LM1) 1 ·m = m;

(LM2) l · (m+ n) = l ·m+ l · n;

(LM3) (l → u) ·m = l′ ·m+ u ·m, for all pairs (l, u) with u ̸= 1.
Moreover, if we have

(LM4) (l ↑ u) ·m = l · (u ·m), for all pairs (l, u) with l ̸= 0,

then M is called an Extended L-module (or briefly EL-module).

Example 3.2. (i) Let L = {0, 1} and define an operation ” → ” on L by

→ 0 1
0 1 1
1 0 1

Then L = (L;→, 0, 1) is a bounded L-algebra. The map ′ : L −→ L by
0′ = 1 and 1′ = 0 is bijective. Consider the operation · : L × Z −→ Z by
0 · n = 0 and 1 · n = n, for every n ∈ Z. Then (LZ1) and (LZ2) are clear.
(LZ3) We have (0 → 0).n = 0′.n + 0.n, (1 → 1).n = 1′.n + 1.n and
(1 → 0).n = 1′.n+0.n, for every n ∈ Z. Then Z is an L-module. Moreover,
(LZ4) We have (0 ↑ 0).n = 0.(0.n) and (1 ↑ 1).n = 1.(1.n), for every n ∈ Z.
Therefore, Z is an EL-module.
(ii) Let A be a non-empty set. Then it is routine to see that (ρ(A);→, ∅, A)
is a bounded L-algebra, where X → Y = X ′ ∪ Y , for every X,Y ∈ ρ(A).
Since ∅ → ∅ = ∅ → A = A → A = A and A → ∅ = ∅, we get L = {∅, A} is
an L-subalgebra of ρ(A) and so it is an L-algebra. ConsiderM = (ρ(A),∆),
where X∆Y = X ∪Y \X ∩Y , for every X,Y ∈ ρ(A). It is easy to see that
M is an abelian group. Now, let the operation · : L×M → M be defined
by T · Y = T ∩ Y , for any T ∈ L and Y ∈ M . Then

(LM1) A · Y = A ∩ Y = Y , for every Y ∈ M ;

(LM2) It is routine to see that
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T · (X + Y ) = T ∩ (X∆Y ) = (T ∩X)∆(T ∩ Y ) = (T ·X) + (T · Y ),

for every T ∈ L and X,Y ∈ M ;

(LM3) We have

(A → A).X = (A ∪A′) ∩X = X = X ∩A = X ∩ (A′∆A)

= (A′ ∩X)∆(A ∩X) = A′ ·X +A ·X,

for every X ∈ M . By the similar way, we have

(∅ → ∅)·X = ∅′ ·X+∅·X and (A → ∅)·X = A′ ·X+∅·X, for every X ∈ M.

Hence, M is an L-module. Moreover,

(LM4) Since

A ↑ A = (A → A) → A = (A′ ∪A) → A = (A ∩A′) ∪A = A,

we have (A ↑ A) ·X = A · (A ·X), for every X ∈ M . By the similar way,
we have (∅ ↑ ∅) · X = ∅ · (∅ · X), for every X ∈ M . Therefore, M is an
EL-module.

Note. From now on, in this paper, we let L = (L;→, 1) be an L-algebra.

Definition 3.3. If l ↑ u = u ↑ l, for every l, u ∈ L, then we say that L is
L-commutative.

Example 3.4. (i) Let L = {0, l, u, 1} and define an operation “ → ” on L
by

→ 0 l u 1
0 1 1 1 1
l u 1 u 1
u l l 1 1
1 0 l u 1

Then (L;→, 1) is an L-algebra. Moreover, L is L-commutative.
(ii) According to Example 3.2 (i), L is L-commutative.
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(iii) Let L = {0, l, u, t, 1} and define operation “ → ” on L by

→ 0 l u t 1
0 1 1 1 1 1
l 0 1 l t 1
u 0 l 1 t 1
t t 1 1 1 1
1 0 l u t 1

Then (L;→, 1) is an L-algebra. Since l ↑ t = (l → t) → t = 1 ̸= l = (t →
l) → l = t ↑ l, L is not L-commutative.

In the following, we present a general example of L-module.

Proposition 3.5. Let L = (L;→, 0, 1) be bounded and L-commutative.
Then (L,+) is an Abelian group, where

l + u = (l → u)′ ↑ (u → l)′, for every l, u ∈ L.

Proof: At first, we show that 0 + l = l + 0 = l, for every l ∈ L. We have

l + 0 = (l → 0)′ ↑ (0 → l)′ = (l′)′ ↑ 1′ = l ↑ 0 = (l → 0) → 0 = (l′)′ = l.

By the similar way, we have 0 + l = l and so 0 + l = l + 0 = l, for every
l ∈ L. Also, since

l + l = (l → l)′ ↑ (l → l)′ = 1′ ↑ 1′ = 0 ↑ 0 = (0 → 0) → 0 = 1 → 0 = 0,

we conclude that every member of L has a counterpart in L. Now, with a
long and routine method, it can be seen

l + (u+ t) = (l + u) + t, for every l, u, t ∈ L.

Finally, since L is L-commutative, we have

l + u = (l → u)′ ↑ (u → l)′ = (u → l)′ ↑ (l → u)′u+ l, for every l, u ∈ L.

Therefore, (L,+) is an Abelian group.

Proposition 3.6. Let L = (L;∧,∨,′ , 0, 1) be a Boolean-algebra. Then L
is a bounded L-algebra. Moreover, L is L-commutative.
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Proof: We define l → u = l′ ∨ u, for every l, u ∈ L. Then

(L1) It is clear that l → l = l → 1 = 1 and 1 → l = l, for every l ∈ L.

(L2) For every l, u ∈ L, we have

(l → u) → (l → t) = (l′ ∨ u) → (l′ ∨ t) = (l′ ∨ u)′ ∨ (l′ ∨ t)

= (l ∧ u′) ∨ (l′ ∨ t) = ((l ∧ u′) ∨ l′) ∨ t

= ((l ∨ l′) ∧ (u′ ∨ l′)) ∨ t = (1 ∧ (u′ ∨ l′)) ∨ t

= (u′ ∨ l′) ∨ t.

On the other hand, by the similar way, we have (u → l) → (u → t) =
(u′ ∨ l′) ∨ t. Hence

(l → u) → (l → t) = (u → l) → (u → t), for every l, u ∈ L.

(L3) Let l → u = u → l = 1, for any l, u ∈ L. Then l′ ∨ u = u′ ∨ l = 1
and so

l ∧ u = (l ∧ l′) ∨ (l ∧ u) = l ∧ (l′ ∨ u) = l ∧ 1 = l.

This means that l ≤ u. By the similar way, we have u ≤ l and so u = l.
Thus, (L,→, 1) is an L-algebra. Note that 0 → l = 0′ ∨ l = 1 ∨ l = 1. So
0 ≤ l, for every l ∈ L and so L is bounded. Moreover, we have

l ↑ u = (l → u) → u = (l′ ∨ u)′ ∨ u = (l ∧ u′) ∨ u = (l ∨ u) ∧ (u ∨ u′)

= l ∨ u=(l ∨ u)∧(l ∨ l′)= l ∨ (u ∧ l′)= l ∨ (u′ ∨ l)′ = l ∨ (u → l)′

= (u → l) → l = u ↑ l, for every u, l ∈ L.

Therefore, L is L-commutative.

Example 3.7. Let L = (L;∧,∨,′ , 0, 1) be a Boolean-algebra. If l → u ̸= 1
implies u ≤ l, for every u, l ∈ L, then L is an L-module.

Proof: By Proposition 3.6, L is bounded and L-commutative, and by
Proposition 3.5, M = (L,+) is an Abelian group, where l+ u = (l → u)′ ↑
(u → l)′, for every l, u ∈ L. We define the operation · : L ×M −→ M by
l.m = l ∧m, for every l ∈ L and m ∈ M . Then

(LM1) 1 ·m = 1 ∧m, for every m ∈ M ;

(LM2) Since for every m,n ∈ M ,
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m+ n = (m → n)′ ↑ (n → m)′=((m → n)′ → (n → m)′) → (n → m)′

= ((m′ ∨ n)′ → (n′ ∨m)′) → (n′ ∨m)′

= ((m′ ∨ n) ∨ (n ∧m′))′ ∨ (n ∧m′)

= ((m ∧ n′) ∧ (n′ ∨m)) ∨ (n ∧m′)

= ((m ∧ n′) ∨ (n ∧m′)) ∧ ((n ∧m′) ∨ (n′ ∨m))

= ((m ∧ n′)∨n)∧((m ∧ n′)∨m)∧((n ∨m ∨ n)∧(n′ ∨m′ ∨m′))

= ((n ∨m) ∧ (n ∨ n′)) ∧ ((m ∨m′) ∧ (m′ ∨ n′)) ∧ (m ∧m)

= (n ∨m) ∧ (m′ ∨ n′) = ((n ∨m) ∧m′) ∨ ((n ∨m) ∧ n′)

= ((n ∧m′) ∨ (m ∧m′)) ∨ ((n ∧ n′) ∨ (m ∧ n′))

= (n ∧m′) ∨ (m ∧ n′),

we have

l · (m+ n) = l ∧ ((n ∧m′) ∨ (m ∧ n′)) = (l ∧ n ∧m′) ∨ (l ∧m ∧ n′)

= ((l ∧m) ∧ (l ∧ n)′) ∨ ((l ∧m)′ ∧ (l ∧ n))

= (l ∧m) + (l ∧ n) = l ·m+ l · n,

for every l ∈ L and m,n ∈ M.

(LM3) Let l → u ̸= 1 or l = u, for any l, u ∈ L. Then u ≤ l and so
u ∨ l = l and u ∧ l = u. Thus, for every m ∈ M ,

l′.m+ u.m = (l′ ∧m) + (u ∧m)

= ((l′ ∧m)′ ∧ (u ∧m)) ∨ ((l′ ∧m) ∧ (u ∧m)′)

= ((l ∨m′) ∧ (u ∧m)) ∨ ((l′ ∧m) ∧ (u′ ∨m′))

= ((u ∧m ∧ l)∨(u ∧m ∧m′)∨(l′ ∧m ∧ u′)∨(l′ ∧m ∧m′))

= (u ∧m ∧ l) ∨ (l′ ∧m ∧ u′) = m ∧ ((u ∧ l) ∨ (l′ ∧ u′))

= ((l ∨ u) → (l ∧ u)).m = (l → u).m.

Note that if l → u = 1, then l ≤ u. So by the similar way, we have
(l → u).m = l′.m+ u.m. Hence,

(l → u) ·m = l′ ·m+ u ·m, for all pairs (l,u) with u ̸= 1.

Therefore, L is an L-module.
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Proposition 3.8. Let L = (L;→, 0, 1) be bounded and L-commutative, I

be an ideal of L and L be an L-module. Then
L

I
is an L-module. Moreover,

if L is an EL-module, then
L

I
is an EL-module.

Proof: Since (L,+) is an Abelian group, it is easy to see that (
L

I
,⊕) is

An abelian group, where [l]⊕ [u] = [l+u], for every l, u ∈ L. We define the

operation • : L× L

I
−→ L

I
by l • [m] = [l ·m], for every l ∈ L and [m] ∈ L

I
.

Then

(L
L

I
1) By (LL1), we have 1 • [m] = [m], for every [m] ∈ L

I
;

(L
L

I
2) By (LL2), for every l ∈ L and [m], [n] ∈ L

I
, we have

1•([m]⊕[n])= l•[m+n]=[l·(m+n)]=[l·m+l·n]=[l·m]⊕[l·n]= l•[m]⊕l•[n];

(L
L

I
3) By (LL3), for every [m] ∈ L

I
and for all pairs (l, u) with u ̸= 1,

we have

(l → u)•[m] = [(l → u)·m] = [l′·m+u·m] = [l′·m]⊕[u·m] = l′•[m]⊕u•[m].

Then
L

I
is an L-module. Moreover,

(L
L

I
4) By (LL4), for every [m] ∈ L

I
and for all pairs (l, u) with l ̸= 0,

we have

(l ↑ u) • [m] = [(l ↑ u) ·m] = [l · (u ·m)] = l • [u ·m] = l • (u • [m]).

Therefore,
L

I
is an EL-module.

Note. From now on, in this paper, we let M be an Abelian group.

Let I ∈ ID(L). The relation ∼ on L is defined by

u ∼ l ⇔ u → l, l → u ∈ I, for every u, l ∈ L.
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It was proved that∼ is a congruence on L. Then (
L

I
;→, [1]) is an L-algebra,

where [u] → [l] = [u → l], for every u, l ∈ L (see [16]).

Theorem 3.9. Let M be an L-module, and I be an ideal of L such that
I ⊆ AnnL(M), where AnnL(M) = {l ∈ L : l ·m = 0, for every m ∈ M}.

Then M is an
L

I
-module. Moreover, if M is an EL-module, then M is an

E
L

I
-module.

Proof: Consider ′ :
L

I
−→ L

I
by ([l])′ = [l′], for every l ∈ L which is a

bijective mapping. Define the operation • :
L

I
× M −→ M by [l] • m =

l · m, for every [l] ∈ L

I
and m ∈ M . Let [l] = [u] and m = n, for every

[l], [u] ∈ L

I
and m,n ∈ M . Then l → u, u → l ∈ I ⊆ AnnL(M) and

so (l → u) · m = (u → l) · m = 0, for every m ∈ M . It results that
l′ ·m+ u ·m = u′ ·m+ l ·m = 0 and so l ·m− u ·m = l′ ·m− u′ ·m and
l ·m = −u′ ·m. Hence l ·m− u ·m = l′ ·m+ l ·m = (l → l) ·m = 1 ·m and
so l ·m− u ·m = 1 ·m. By the similar way, we have u ·m− l ·m = 1 ·m.
It results that l ·m − u ·m = u ·m − l ·m and so l ·m = u ·m. It means
that • is well defined. Now, we have:

(
L

I
M1) By (LM1), it is clear that [1] •m = m, for every m ∈ M ;

(
L

I
M2) By (LM2), we have

[l] • (m+ n) = l · (m+ n) = l ·m+ l · n = [l] •m+ l • n,

for every [l] ∈ L

I
and m,n ∈ M ;

(
L

I
M3) By (LM3), for every m ∈ M and for all pairs ([l], [u]) with

[u] ̸= [1], we have

([l] → [u])•m = [l → u]•m = (l → u) ·m = l′ ·m+u ·m = [l]′ •m+[u]•m.
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Note that l ̸= 1 implies [l] ̸= [1]. Hence, M is an
L

I
-module. Moreover,

(
L

I
M4) by (LM4), for every m ∈ M and for all pairs ([l], [u]) with

[l] ≠ [0], we have

([l] ↑ [u])•m = [l ↑ u]•m = (l ↑ u)·m = l·(u·m) = [l]•(u·m) = [l]•([u]•m).

Note that l = 0 implies [l] = [0]. Therefore, M is an E
L

I
-module.

Definition 3.10. Let M be an L-module, and S be a subgroup of M . If
S satisfies

l · s ∈ S, for every l ∈ L and s ∈ S,

then it is called an L-submodule of M .

Example 3.11. (i) By Example 3.2 (i), 2Z is an L-submodule of M .
(ii) According to Example 3.2 (ii), consider A = {a, b}. Then S1 = {∅, {a}}
and S2 = {∅, {b}} are L-submodules of M .

Let M be an L-module, and S be an L-submodule of M . Since (M,+)
is an Abelian group and S is a subgroup of M , we can apply the module

theory to present quotient L-module. So it is clear that (
M

S
,⊕) is an

Abelian group, where (m+S)⊕(n+S) = (m+n)⊕S, for every m,n ∈ M .

Proposition 3.12. Let M be an L-module, and S be an L-submodule of

M . Then
M

S
is an L-module. Moreover, if M is an EL-module, then

M

S
is an EL-module.

Proof: We define the operation • : L×M

S
−→ M

S
by l•(m+S) = l·m+S,

for every l ∈ L and m+ S ∈ M

S
. It is routine to see that • is well defined.

By (LM1) and (LM2), the proofs of (L
M

S
1) and (L

M

S
2) are routine.

(L
M

S
3) By (LM3), for all pairs (l, u) with u ̸= 1, we have
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(l → u) • (m+ S) = (l → u) ·m+ S = (l′ ·m+ u ·m) + S

= (l′ ·m+ S)⊕ (u ·m+ S)

= l′ • (m+ S)⊕ u • (m+ S),

for every m+ S ∈ M

S
. Then

M

S
is an L-module. Moreover,

(L
M

S
4) by (LM4), for all pairs (l, u) with l ̸= 0, we have

(l ↑ u) • (m+ S) = (l ↑ u) ·m+ S = l · (u ·m) + S

= l • (u ·m+ S) = l • (u • (m+ S)),

for every m+ S ∈ M

S
. Therefore,

M

S
is an EL-module.

Lemma 3.13. Let M be an EL-module, and I be an ideal of L. Then

IL(M) = {Σn
i=1ti ·mi : 0 ̸= ti ∈ I,mi ∈ M,n ∈ N}

is an L-submodule of M .

Proof: It is clear that IL(M) is a subgroup of M . Now, for every l ∈ L
and Σn

i=1ti ·mi ∈ IL(S), by (LM2), we have

l · Σn
i=1ti ·mi = l · (t1 ·m1) + l · (t2 ·m2) + · · ·+ l · (tn ·mn)

and so by (LM4),

l · Σn
i=1ti ·mi = (l ↑ t1) ·m1 + (l ↑ t2) ·m2 + · · ·+ (l ↑ tn) ·mn.

Since by (I3), ti ·mi ∈ I, for every 1 ≤ i ≤ n, we get l ·Σn
i=1ti ·mi ∈ IL(M).

Therefore, IL(M) is an L-submodule of M .

Definition 3.14. Let I be a proper ideal of L. Then I is called a prime
ideal of L, if l ↑ u ∈ I implies l ∈ I or u ∈ I, where l, u ∈ L.

Example 3.15. According to Example 3.4 (i), it is easy to see that I1 =
{1, l} and I2 = {1, u} are prime ideals of L.
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Theorem 3.16. Let M be an EL-module, S be an L-submodule of M and
P be a prime ideal of L. Then

SN,P = {m ∈ M : c ·m ∈ PL(M) + S, ∃ 0 ̸= c ∈ (L \ P ) ∪ {1}}

is an L-submodule of M and PL(M) + S ⊆ SN,P .

Proof: Let m,n ∈ SN,P . Then there are c1, c2 ∈ (L \ P ) ∪ {1} such that
0 ̸= c1, 0 ̸= c2 and c1 ·m, c2 · n ∈ P ·M + S. Consider c = c1 ↑ c2. It is
clear that c ∈ (L \ P ) ∪ {1}. Then by (LM4), we have

c · (m− n) = (c1 ↑ c2) · (m− n) = c1 · (c2 · (m− n))

= c1 · (c2 ·m− c2 · n) = c1 · (c2 ·m)− c1 · (c2 · n)

and so by Lemma 3.13, c · (m − n) ∈ PL(M) + S. Now, for every l ∈ L
and m ∈ SN,P , we show that l · m ∈ SN,P . Since m ∈ SN,P , there is
0 ̸= c ∈ (L \ P ) ∪ {1} such that c ·m ∈ PL(M). Then by Lemma 3.13 and
(LM4),

c · (l ·m) = (c ↑ l) ·m = (l ↑ c) ·m = l · (c ·m) ∈ PL(M).

Hence, SN,P is an L-submodule of M . Finally, let t · m ∈ PL(M). Then
we have 1 · (t ·m) ∈ PL(M) + S, where c = 1 ∈ (L \ P ) ∪ {1}. Therefore,
t ·m ∈ SN,P and so PL(M) ⊆ SN,P .

Theorem 3.17. Let I be an ideal of L, and M be an EL-module. Then
M

IL(M)
is an E

L

I
-module. Moreover, if M is an EL-module, then

M

IL(M)

is an E
L

I
-module.

Proof: The module
M

IL(M)
can be defined by Lemma 3.13. Then we

define the operation

• :
L

I
× M

IL(M)
−→ M

IL(M)
by [l] • (m+ IL(M)) = l ·m+ IL(M), for every

[l] ∈ L

I
and m+ IL(M) ∈ M

IL(M)
. Since

I • M

IL(M)
= {l • (m+ IL(M)) : l ∈ L,m ∈ M}

= {l ·m+ IL(M) : l ∈ L,m ∈ M} = IL(M),
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we have I ⊆ AnnL(
M

IL(M)
) and so with a proof similar to the proof of

Theorem 3.9, • is well defined.

(
L

I

M

IL(M)
1) By (LM1), [1]•(m+IL(M)) = 1·m+IL(M) = m+IL(M),

for every m ∈ M ;

(
L

I

M

IL(M)
2) By (LM2), we have

[l]•((m+IL(M))⊕(n+IL(M))) = [l] • (m+ n+ IL(M))

= l · (m+ n) + IL(M)

= l ·m+ l · n+ IL(M)

= (l ·m+ IL(M))⊕ (l · n+ IL(M))

= [l] • (m+ IL(M))⊕ [l] • (n+ IL(M)),

for every [l] ∈ L

I
and (m+ IL(M)), (n+ IL(M)) ∈ M

IL(M)
;

(
L

I

M

IL(M)
3) By (LM3), for every m + IL(M) ∈ M

IL(M)
and for all

pairs ([l], [u]) with [u] ̸= [1], we have

([l] → [u]) • (m+ IL(M)) = [l → u] • (m+ IL(M))

= (l → u) ·m+ IL(M)

= (l′ ·m+ u ·m) + IL(M)

= (l′ ·m+ IL(M))⊕ (u ·m+ IL(M))

= [l]′ • (m+ IL(M))⊕ [u] • (m+ IL(M));

Hence, M is an
L

I
-module. Moreover,

(
L

I

M

IL(M)
4) by (LM4), for every m+IL(M) ∈ M

IL(M)
and for all pairs

([l], [u]) with [l] ̸= [0], we have

([l] ↑ [u]) • (m+ IL(M)) = [l ↑ u] • (m+ IL(M)) = (l ↑ u) ·m+ IL(M)

= l · (u ·m) + IL(M) = [l] • (u ·m+ IL(M))

= [l] • ([u] • (m+ IL(M)).
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Therefore,
M

IL(M)
is an E

L

I
-module.

Definition 3.18. Let M be an L-module and S be a proper L-submodule
of M . Then S is called a prime L-submodule of M , if by l ·m ∈ S, we have
m ∈ S or l ∈ (S : M) = {l ∈ L : l ·M ⊆ S}.

Example 3.19. By Example 3.2(i), 2Z is a prime L-submodule of Z.

Note. Let M be an L-module, I ⊆ L and D ⊆ M . Then we set ID =
{i · d : i ∈ I and d ∈ D}, and It = {α ∈ L : t → α = 1}, for every t ∈ L. It
is clear that 1, t ∈ It and so It ̸= ∅.

Theorem 3.20. Let L be bounded and L-commutative, M be an L-module
and S be a proper L-submodule of M . Then S is a prime L-submodule
of M if and only if ItD ⊆ S implies D ⊆ S or It ⊆ (S : M), for any
L-submodule D of M and t ∈ L.

Proof: (⇒) Let S be a prime L-submodule of M and ItD ⊆ S, where D
is an L-submodule of M and t ∈ L. We show that D ⊆ S or It ⊆ (S : M).
Let It ⊈ (S : M) and D ⊈ S. Then there are x ∈ It and d ∈ D such that
x ·M ⊈ S and d /∈ S. Since ID ⊆ S, we have x · d ∈ S and so by d /∈ S,
we get x ∈ (S : M), which is a contradiction.
(⇐) Let by ItD ⊆ S, we have D ⊆ S or It ⊆ (S : M), for any L-submodule
D of M and t ∈ L. Suppose x · m ∈ S and m /∈ S, for any x ∈ L and
m ∈ M . For every α ∈ Ix, we have

α ·m = (1 → α) ·m = ((x → α) → α) ·m = (x ↑ α) ·m = (α ↑ x) ·m
= α · (x ·m) ∈ S.

Now, consider D =≺ m ≻= {y ·m : y ∈ L}. Then

IxD = {α · (y ·m) : α, y ∈ L} = {y · (α ·m) : α, y ∈ L} ⊆ S

and so Ix ⊆ (S : M) or D ⊆ S. Since m /∈ S, we have Ix ⊆ (S : M) and so
x ∈ (S : M). Therefore, S is a prime L-submodule of M .

Proposition 3.21. For every x, y ∈ L,

(i) x′ → (x → y) = 1;

(ii) (x → y) → x′ = (y → x) → y′.
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Proof: (i) By (L2), we have
x′ → (x → y) = (x → 0) → (x → y) = (0 → x) → (0 → y) = 1 → 1 =
1, for every x, y ∈ L. (ii) By (L2), we have
(x → y) → x′ = (x → y) → (x → 0) = (y → x) → (y → 0) = (y → x) →
y′, for every x, y ∈ L.

Lemma 3.22. Let L be a bounded KL-algebra, M be an EL-module and S
be a proper L-submodule of M . Then PS = (S : M)∪ {1} is an ideal of L.

Proof: (I1) It is clear that 1 ∈ PS .
(I2) Let x, x → y ∈ PS . Because of the nature of the definition of PS , we
need to consider three cases:

(1) If x = 1, then y = 1 → y = x → y ∈ PS .

(2) Let x → y = 1. Then for y = 1, the problem is solved. Thus, let
y ̸= 1. In this case, if x = 0, then by (LM3), m = 1 ·m = (0 → y) ·m =
1 · m + y · m = m + y · m and so y · m = 0, for every m ∈ M . It means
that y ∈ (S : M) and so y ∈ PS . Hence, suppose x ̸= 0 and y ̸= 1. Since
y = 1 → y = (x → y) → y = x ↑ y, by (LM4), we have

y ·m = (x ↑ y) ·m = (y ↑ x) ·m = y · (x ·m) ∈ S, for every m ∈ M.

Thus, y ∈ (S : M) and so y ∈ PS .

(3) Let x ̸= 1 and x → y ̸= 1. Then x ·m, (x → y) ·m ∈ S, for every
m ∈ M . It results that x ·m + (x → y) ·m ∈ S, for every m ∈ M . Now,
by Proposition 3.21(i) and (LM3), for every m ∈ M , we have

m = 1 ·m = (x′ → (x → y)) ·m = x ·m+ (x → y) ·m ∈ S,

which is a contradiction.

Therefore, PS = (S : M) ∪ {1} is an ideal of L.

Definition 3.23. Let L be bounded and M be an L-module. Then M is
called a torsion free L-module, if l ·m = 0 implies l = 0 or m = 0, for every
l ∈ L and m ∈ M .

Example 3.24. By Example 3.2(ii), M is a torsion free L-module.
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Theorem 3.25. Let L be a bounded KL-algebra, M be an EL-module and
S be a proper L-submodule of M . Then S is a prime L-submodule of M if

and only if PS = (S : M) ∪ {1} is a prime ideal of L and
M

S
is a torsion

free
L

PS
-module.

Proof: (⇒) Let S is a prime L-submodule of M . By Lemma 3.22, PS

is an ideal of L. At first, we show that PS is a prime ideal of L. Let
x ↑ y ∈ PS , for any x, y ∈ PS . We consider three cases:

(1) If x = 1 or y = 1, then x ∈ PS or y ∈ PS .

(2) If x ↑ y ̸= 1, x ̸= 1 and y ̸= 1, then by (LM4), we have x · (y ·m) =
(x ↑ y) · m ∈ S, for every m ∈ S. Hence, x ∈ (S : M) or y · m ∈ S, for
every m ∈ M . It results that x ∈ PS or y ∈ PS .

(3) Let x ↑ y = 1, x ̸= 1 and y ̸= 1. Then (x → y) → y = x ↑ y = 1
and so x → y ≤ y. Since y ≤ x → y, we have x → y = y and so by (LM3),

(x → y) ·m = x′ ·m+ y ·m = y ·m, for every, m ∈ M.

Then x′ ·m = 0 ∈ S and so x′ ∈ (S : M) or m ∈ S, for every m ∈ M . If
m ∈ S, for every m ∈ M , then M = S, which is a contradiction. Thus,
x′ ∈ (S : M) ⊆ PS and so by (I3), we have y = x → y = y′ → x′ ∈ PS .
Hence, PS is a prime ideal of L.

Now, we define the operation • :
L

PS
×M

S
−→ M

S
by [l]•(m+S) = l ·m+S,

for every [l] ∈ L

PS
and m + S ∈ M

S
. By the similar way to the proof of

Theorem 3.17,
M

S
is an

L

PS
-module. Finally, let [l] • (m+ S) = S, for any

[l] ∈ L

PS
and m+ S ∈ M

S
. Then l ·m+ S = S and so l ·m ∈ S. It results

that l ∈ (S : M) ⊆ PS or m ∈ S and so [l] = PS or m+ S = S. Therefore,
M

S
is a torsion free

L

PS
-module.
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l · m + S = S and so [l] = PS = [1] or m + S = S. It means that
l = 1 → l ∈ PS . Therefore, S is a prime L-submodule of M .

4. Conclusions and future works

In this paper, we have presented the definitions of L-modules, L-submodules
and prime L-submodules, and some results about prime L-submodules. We
intend to study L-modules in specific cases, too. For examples, free L-
modules, projective(injective) L-modules, and so on. Because L-algebras
cover a number of algebraic structures (such as BCK-algebras, etc.), the
results of this paper can be generalized to those algebraic structures. We
hope that we have taken an effective step in this regard.
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