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Abstract

The main goal of this paper is to introduce the notion of stabilizers in L-algebras

and develop stabilizer theory in L-algebras. In this paper, we introduced the no-

tions of left and right stabilizers and investigated some related properties of them.

Then, we discussed the relations among stabilizers, ideal and co-annihilators.

Also, we obtained that the set of all ideals of a CKL-algebra forms a relative

pseudo-complemented lattice. In addition, we proved that right stabilizers in

CKL-algebra are ideals. Then by using the right stabilizers we produced a basis

for a topology on L-algebra. We showed that the generated topology by this

basis is Baire, connected, locally connected and separable and we investigated

the other properties of this topology.
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1. Introduction

L-algebras, which are related to algebraic logic and quantum structures,
were introduced by Rump [8]. Many examples shown that L-algebras are
very useful. Yang and Rump [10], characterized pseudo-MV-algebras and
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Bosbach’s non-commutative bricks as L-algebras. Wu and Yang [13] proved
that orthomodular lattices form a special class of L-algebras in different
ways. It was shown that every lattice-ordered effect algebra has an under-
lying L-algebra structure in Wu et al. [12]. Also, they proved that a basic
algebra which satisfies

(z ⊕ ¬x)⊕ ¬(y ⊕ ¬x) = (z ⊕ ¬y)⊕ ¬(x⊕ ¬y),

can be converted into an L-algebra. Conversely, if an L-algebra with 0
and some conditions such that it is an involutive bounded lattice can be
organized into a basic algebra, it must be a lattice-ordered effect algebra.
In addition, Aaly in [1], and Ciung in [5] studied the relationship between
logical algebraic structures and basic algebras with L-algebras, such as
BCK/ BCI-algebras, hoop, residuated lattice, equality and EQ-algebras.

A stabilizer is a part of a monoid acting on a set. Specifically, let
X be a monoid operating on a set X and let H be a subset of X. The
stabilizer of H, sometimes denoted St(H) is the set of elements as a of X
for which a(H) ⊆ H. The strict stabilizer is the set of a ∈ X for which
a(H) = H. In the other words, the stabilizer of H is the transporter of H to
itself. In recent years, many mathematicians have studied and investigated
the characteristics of stabilizers in logical algebraic structures. Also, some
of them have used a special type of stabilizers called co-annihilators and
have obtained interesting results in this field, and this concept has been
investigated on different structures, such as BL-algebra, EQ-algebra, hoop
and etc. For more information in this field, we refer the readers to the
references [3, 4, 6, 7, 11].

The main goal of this paper is to introduce the notion of stabilizers in
L-algebras and develop stabilizer theory in L-algebras. In this paper, we
introduce the notions of left and right stabilizers and investigate some re-
lated properties of them. Then, we discuss the relations among stabilizers,
ideal and co-annihilators. Also, we obtain that the set of all ideals in a
CKL-algebra forms a relative pseudo-complemented lattice. In addition,
we prove that right stabilizers in CKL-algebra are ideals. Then by us-
ing the right stabilizers produce a basis for a topology on L-algebra. We
show that the generated topology by this basis is Baire, connected, locally
connected and separable and we investigate the other properties of this
topology.
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2. Preliminaries

In this section, we gather some basic notions relevent to L-algebras which
will need in the next sections.

Definition 2.1 ([8]). An L-algebra is an algebraic structure (L;→, 1) of
type (2, 0) satisfying

(L1) x → x = x → 1 = 1 and 1 → x = x,

(L2) (x → y) → (x → z) = (y → x) → (y → z),

(L3) if x → y = y → x = 1, then x = y,

for any x, y, z ∈ L. Condition (L1) states that 1 is a logical unit, while
(L2) is related to the quantum Yang-Baxter equation. Note that a logical
unit is always unique. In addition, we can define the relation

x ≲ y if and only if x → y = 1,

on L. By (L1) and (L2), clearly this relation is reflexive and transitive,
respectively and by (L3), untisymmetric is proved. So, (L,≲) is a poset.
If L admits a smallest element 0, then it is called a bounded L-algebra.

Let L be bounded. We define a binary operation “′” on L by x′ = x → 0,
for all x ∈ L. If for any x ∈ L, x′′ = x, then the bounded L-algebra L is
called to have the double negation properties.

Proposition 2.2 ([10]). Let L be an L-algebra. Then x ≲ y implies
z → x ≲ z → y, for any x, y, z ∈ L.

Proposition 2.3 ([10]). For an L-algebra L, the following are equivalent:

(i) x ≲ y → x,

(ii) if x ≲ z, then z → y ≲ x → y,

(iii) ((x → y) → z) → z ≲ ((x → y) → z) → ((y → x) → z),

for any x, y, z ∈ L.

Definition 2.4 ([9]). An L-algebra L which satisfies

x → (y → x) = 1, (K)

for any x, y ∈ L is called a KL-algebra.
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A CKL-algebra is an L-algebra which satisfies

x → (y → z) = y → (x → z), (C)

for any x, y, z ∈ L (see [9]).

Clearly, every CKL-algebra is a KL-algebra, since for any x, y ∈ L, we
have

x → (y → x) = y → (x → x) = y → 1 = 1.

Proposition 2.5 ([2]). Assume (L,→, 1) is a CKL-algebra. Then for any
x, y, z ∈ L, the following properties hold:

(i) if x ≲ y, then z → x ≲ z → y,

(ii) x → (y → x) = 1, i.e., x ≲ y → x,

(iii) x ≲ (x → y) → y,

(iv) x ≲ y → z if and only if y ≲ x → z,

(v) if x ≲ y, then y → z ≲ x → z,

(vi) ((x → y) → z) → z ≲ ((x → y) → z) → ((y → x) → z),

(vii) z → y ≲ (y → x) → (z → x),

(viii) z → y ≲ (x → z) → (x → y),

If L has a least element 0, then

(ix) if x ≲ y, then y′ ≲ x′, where x′ = x → 0,

(x) x ≲ x′′, and x′ = x′′′,

(xi) x′ ≲ x → y,

(xii) ((x → y) → y) → y = x → y,

(xiii) If L has double negation, then x → y = y′ → x′.

Definition 2.6 ([8]). An L-algebra L is said to be a semi-regular if the
equation

((x → y) → z) → ((y → x) → z) = ((x → y) → z) → z,

holds in L. Also, L is called a regular L-algebra if in addition, for any
pair element x ≲ y in L, there is an element z ≳ x in L such that z → x = y.
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For a bounded L-algebra with negation, we set

x⋏ y = ((x → y) → x′)′, x⋎ y = (x′ → y′) → x. (2.1)

Proposition 2.7 ([10]). Let L be a semi-regular L-algebra with negation.
Then the equations

x → (y ⋏ z) = (x → y)⋏ (x → z)

(x⋎ y) → z = (x → z)⋏ (y → z)

hold for any x, y, z ∈ L.

Definition 2.8 ([8]). A subset I of an L-algebra L is called an ideal of L
if it satisfies the following conditions for all x, y ∈ L,
(I1) 1 ∈ I,

(I2) if x ∈ I and x → y ∈ I, then y ∈ I,

(I3) if x ∈ I, then (x → y) → y ∈ I,

(I4) if x ∈ I, then y → x ∈ I and y → (x → y) ∈ I.
The set of all ideals of L is denoted by Id(L).

Proposition 2.9 ([2]). Every ideal of L is upset.

If we consider the ideal of CKL-algebra, the conditions (I3) and (I4)
can be dropped. In fact, for any x ∈ I, by (C) and (I1) we have

x → ((x → y) → y) = (x → y) → (x → y) = 1 ∈ I,

for any y ∈ L. It follows by (I2) that (x → y) → y ∈ I. Thus (I3) holds.
Furthermore, if x ∈ I, then for any y ∈ L, by (K) we have x → (y → x) =
1 ∈ I and by (I2), y → x ∈ I.

For an L-algebra such as L, a binary relation ∼ is a congruence relation
[8] on L if it is an equivalence relation such that for any x, y, z ∈ L,

x ∼ y ⇔ (z → x) ∼ (z → y) and (x → z) ∼ (y → z).

Theorem 2.10 ([8]). Let (L,→, 1) be an L-algebra. Then every ideal I of
L defines a congruence relation on L, for any x, y ∈ L, where

x ∼I y ⇔ x → y, y → x ∈ I.



110 Gholam Reza Rezaei, Mona Aaly Kologani

Conversely, every congruence relation ∼ defines an ideal

I = {x ∈ L | x ∼ 1}.

Definition 2.11 ([8]). Let L and H be two L-algebras. Then a map f :
L → H is called an L-homomorphism if for any x, y ∈ L we have

f(x →L y) = f(x) →H f(y).

Obviously, f(1L) = 1H.

Note. From now on, we let (L,→, 1) or L, for short, be an L-algebra and
X be a non-empty subset of L.

3. Main results

3.1. Stabilizers on L-algebras

In this section, we introduce the notions of left and right stabilizers on
L-algebras and investigate some properties of them.

Definition 3.1. A left stabilizer and a right stabilizer of X are de-
fined as follows:

Sr(X) = {a ∈ L | for any x ∈ X, a → x = x}.
Sl(X) = {a ∈ L | for any x ∈ X, x → a = a}.

Example 3.2. (i) Assume (L = {a, b, c, 1},≲) is a chain where a < b < c <
1. Then (L,→, 1) is an L-algebra such that

→ a b c 1
a 1 1 1 1
b c 1 1 1
c b c 1 1
1 a b c 1

Clearly, Sr({b}) = Sl({b}) = {1}.
(ii) Suppose (L = {a, b, c, 1},≲) is a chain where a < b < c < 1. Then
(L,→, 1) is an L-algebra such that
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→ a b c 1
a 1 1 1 1
b b 1 1 1
c a b 1 1
1 a b c 1

If X1 = {c} and X2 = {a, b, 1}, then Sl(X1) = {a, b, 1} and Sr(X2) = {c, 1}.

Note. Sr(Sl(X)) is called a right-left stabilizer of X and we denote it
by (Sl(X))r, for short. Similarly, (Sr(X))l is a left-right stabilizer of X.

Proposition 3.3. For all x, y ∈ L and ∅ ̸= X,Y ⊆ L, the following state-
ments hold:

(i) 1 ∈ Sr(X) ∩ Sl(X).

(ii) If X ⊆ Y, then Sr(Y) ⊆ Sr(X) and Sl(Y) ⊆ Sl(X).

(iii) X ⊆ (Sr(X))l ∩ (Sl(X))r.

(iv) Sr(X) = (((Sr(X))l)r and Sl(X) = (((Sl(X))r)l.

(v) If {Xi}i∈I is a family of non-empty subsets of L, then Sr(
⋃
i∈I

Xi) =⋂
i∈I

Sr(Xi) and Sl(
⋃
i∈I

Xi) =
⋂
i∈I

Sl(Xi).

(vi) Sr(L) = Sl(L) = {1}.

(vii) Sr({1}) = Sl({1}) = L.

(viii) If x ∈ Sr({x}) ∩ Sl({x}), then x = 1.

(ix) If h : L → L is a homomorphism and x ∈ L, then h(Sr({x})) ⊆
Sr({h(x)}) and h(Sl({x})) ⊆ Sl({h(x)}).

(x) If L is a bounded L-algebra with DNP, then Sr({0}) = {1}.

(xi) If L is a bounded L-algebra, then Sr({0}) = {1} if and only if for
any x, y ∈ L, x → y, y → x ∈ Sr({0}) implies x = y.

Proof: (i) Clearly, by (L1), since for any x ∈ X, 1 → x = x, we get
1 ∈ Sr(X). In addition, by (L1), x → 1 = 1, and so 1 ∈ Sl(X). Hence,
1 ∈ Sr(X) ∩ Sl(X).
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(ii) Assume a ∈ Sr(Y). Then for any y ∈ Y, a → y = y. Since X ⊆ Y,
clearly, for any x ∈ X, a → x = x and so a ∈ Sr(X). Hence, Sr(Y) ⊆ Sr(X).
The proof of the other case is similar.

(iii) Suppose a ∈ X. Then for any y ∈ Sr(X), y → a = a, and so a ∈
(Sr(X))l. In addition, for any y ∈ Sl(X), a → y = y and so a ∈ (Sl(X))r.
Hence, a ∈ (Sr(X))l ∩ (Sl(X))r. Therefore, X ⊆ (Sr(X))l ∩ (Sl(X))r.
(iv) By (iii), we have X ⊆ (Sr(X))l and by (ii), we get ((Sr(X))l)r ⊆
Sr(X). Also, by (iii), Y ⊆ (Sl(Y))r. Consider Y = Sr(X). Then Sr(X) ⊆
((Sr(X))l)r. Hence, Sr(X) = (((Sr(X))l)r. The proof of the other case is
similar.

(v) Since Xi ⊆
⋃
i∈I

Xi, by (ii), Sr(
⋃
i∈I

Xi) ⊆ Sr(Xi), and so Sr(
⋃
i∈I

Xi) ⊆⋂
i∈I

Sr(Xi). Conversely, assume a ∈
⋂
i∈I

Sr(Xi), then for any i ∈ I, a ∈

Sr(Xi), and so for any xi ∈ Xi, a → xi = xi. Thus for any x ∈
⋃
i∈I

Xi,

there exists i ∈ I such that x ∈ Xi, and so a → x = x. So, a ∈ Sr(
⋃
i∈I

Xi).

Therefore, Sr(
⋃
i∈I

Xi) =
⋂
i∈I

Sr(Xi).

(vi) Clearly, by (i), {1} ⊆ Sr(L). Assume 1 ̸= a ∈ Sr(L). Then for any
x ∈ L, a → x = x. Let x = a. Then 1 = a → a = a, and so a = 1,
which is a contradiction. Hence, Sr(L) = {1}. The proof of the other case
is similar.

(vii) Obviously, Sr({1}),Sl({1}) ⊆ L. Suppose a ∈ L. Then by (L1),
a → 1 = 1 and 1 → a = a. Thus a ∈ Sr({1}) ∩ Sl({1}). Hence Sr({1}) =
Sl({1}) = L.
(viii) Straightforward.

(ix) Assume y ∈ h(Sl({x})). Then there exists a ∈ Sl({x}) such that
y = h(a). Since x → a = a and h is a homomorphism on L, we have

y = h(a) = h(x → a) = h(x) → h(a) = h(x) → y.

Thus y ∈ Sl({h(x)}). Hence, h(Sl({x})) ⊆ Sl(h(x)). The proof of the
other case is similar.

(x) Assume a ∈ Sr({0}). Then a → 0 = 0, and so a′ = 0. By hypothesis,
a′′ = 0′ = 1 and so a = 1. Thus Sr({0}) = {1}.
(xi) If Sr({0}) = {1} and x → y, y → x ∈ Sr({0}), then x → y = y → x =

1, and by (L3), we have x = y. Conversely, by (i), {1} ⊆ Sr({0}). Consider
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a ∈ Sr({0}). Since 1 → a = a ∈ Sr({0}) and a → 1 = 1 ∈ Sr({0}), we
get 1 → a, a → 1 ∈ Sr({0}). So, by assumption, we have a = 1. Hence,
Sr({0}) = {1}.

In the following example we show that for any non-empty subset X of
L, Sr(X) and Sl(X) are not ideals of L, in general.

Example 3.4. (i) According to Example 3.2(i), Sr({b}) = Sl({b}) = {1}.
So, both are ideals of L.
(ii) According to Example 3.2(ii), Sr({a, b, 1}) = {c, 1} is an ideal of L but
Sl({c}) = {a, b, 1} is not an ideal of L since b → c = 1 ∈ {a, b, 1} and
b ∈ {a, b, 1} but c /∈ {a, b, 1}.
(iii) Suppose (L = {a, b, c, 1},≲) is a poset where a, c < b < 1. Then
(L,→, 1) is an L-algebra such that

→ a b c 1
a 1 1 a 1
b a 1 c 1
c b 1 1 1
1 a b c 1

If X = {b}, then Sl(X) = {a, c, 1} is not an ideal of L, because a → b = 1 ∈
Sl(X) and a ∈ Sl(X), but b /∈ Sl(X).
(iv) Suppose (L = {a, b, c, 1},≲) is a poset where a < b, c < 1. Then
(L,→, 1) is an L-algebra such that

→ a b c 1
a 1 1 1 1
b c 1 c 1
c b b 1 1
1 a b c 1

Assume X = {b}. Then Sr(X) = Sl(X) = {c, 1} are ideals of L.

Proposition 3.5. If L is a KL-algebra and for any x, y ∈ L, (x → y) →
y = (y → x) → x, then for any X ⊆ L, Sr(X) = Sl(X).

Proof: Let a ∈ Sr(X). Then for any x ∈ X, a → x = x. Since L is a
KL-algebra, by Proposition 2.3, a ≲ x → a. By assumption,

(x → a) → a = (a → x) → x = x → x = 1.
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Thus, x → a ≲ a, and so by (L3), we have x → a = a. Hence, a ∈ Sl(X)
and so Sr(X) ⊆ Sl(X). The proof of the other case is similar.

Example 3.6. Assume L is an L-algebra as in Example 3.4(iv). This ex-
ample demonstrates Proposition 3.5.

In the following example we show that the condition (x → y) → y =
(y → x) → x in Proposition 3.5 is necessary.

Example 3.7. Let L be an L-algebra as in Example 3.2(ii). Clearly, L is a
KL-algebra but

(a → c) → c = 1 → c = c ̸= 1 = a → a = (c → a) → a.

As we see in this example, if X = {c}, then Sr(X) = {1} ̸= {a, b, 1} = Sl(X).

Theorem 3.8. If L is a CKL-algebra, Sr(X) is an ideal of L, for any
non-empty subset X of L.

Proof: By Proposition 3.3(i), 1 ∈ Sr(X). Assume a, a → b ∈ Sr(X), for
any a, b ∈ L. Then for any x ∈ X, a → x = x and (a → b) → x = x. Thus,

b → x ≲ (a → b) → (a → x) by Proposition 2.5(viii)

= a → ((a → b) → x) by (C)

= a → x since a → b ∈ Sr(X)
= x. since a ∈ Sr(X)

Thus, b → x ≲ x. By Proposition 2.5(ii), x ≲ b → x. Hence, b → x = x,
and so b ∈ Sr(X). Therefore, Sr(X) is an ideal of L.

The next example shows that the condition CKL-algebra in Theorem
3.8 is necessary.

Example 3.9. Suppose (L = {a, b, c, 1},≲) is a poset where a, c < b < 1.
Then (L,→, 1) is an L-algebra such that

→ a b c 1
a 1 1 a 1
b c 1 a 1
c a 1 1 1
1 a b c 1



Stabilizers on L-algebras 115

But L is not a CKL-algebra, since

a → (b → c) = a → a = 1 ̸= c = b → a = b → (a → c).

If X = {a}, then Sr(X) = {c, 1}, which is not an ideal of L, because since
c ∈ Sr(X) by (I3), we have to have b → c ∈ Sr(X), but b → c = a /∈ Sr(X).

By the following example we show that in any CKL-algebra, Sl(X) is
not an ideal of L.

Example 3.10. Suppose (L = {a, b, c, 1},≲) is a chain where a < b < c < 1.
Then (L,→, 1) is a CKL-algebra such that

→ a b c 1
a 1 1 1 1
b a 1 1 1
c a b 1 1
1 a b c 1

Assume X = {b}. Then Sl(X) = {a, 1} which is not an ideal of L, since
a → b = 1 ∈ Sl(X) and a ∈ Sl(X) but b /∈ Sl(X).

Remark 3.11. If L is a CKL-algebra with DNP, then by Proposition 2.5(xiii)
and (2.1), we have

x⋎ y = (x′ → y′) → x = (y → x) → x.

Proposition 3.12. Assume L is a CKL-algebra with DNP and a ∈ L. If
a⋎ x = 1, then for any x ∈ X, a ∈ Sr(X) ∩ Sl(X).

Proof: Since L is a CKL-algebra, by Proposition 2.5(ii), a ≲ x → a, for
any x ∈ X. By assumption and Remark 3.11, we have

1 = a⋎ x = (a′ → x′) → a = (x → a) → a.

So, x → a ≲ a. Thus by Proposition 2.5(ii), we get x → a = a, and
so a ∈ Sl(X). By similar discussion, we can prove a ∈ Sr(X). Hence,
a ∈ Sr(X) ∩ Sl(X).

Theorem 3.13. Let L be a semi-regular L-algebra with negation. If x⋎y ∈
Sr(X), then x ∈ Sr(X) or y ∈ Sr(X).
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Proof: Suppose x⋎ y ∈ Sr(X) such that x /∈ Sr(X) and y /∈ Sr(X). Then
for any a ∈ X, (x⋎ y) → a = a, x → a ̸= a and y → a ̸= a. By Proposition
2.3, a < x → a and a < y → a. Thus by Proposition 2.7 we have

a < (x → a)⋏ (y → a) = (x⋎ y) → a = a,

which is a contradiction. Hence, x ∈ Sr(X) or y ∈ Sr(X).

Theorem 3.14. Let L be a semi-regular L-algebra with negation. If I1, I2 ∈
Id(X) such that Sr(X) = I1 ∩ I2, then Sr(X) = I1 or Sr(X) = I2.

Proof: By the assumption, Sr(X) = I1 ∩ I2. So, clearly, Sr(X) ⊆ I1 and
Sr(X) ⊆ I2. Now, suppose I1, I2 ⊈ Sr(X). Then there exist a ∈ I1 \ Sr(X)
and b ∈ I2 \ Sr(X). Since I1, I2 ∈ Id(X), by Proposition 2.9, I1 and I2
are upset. So, a ≲ a ⋎ b and b ≲ a ⋎ b, we get a ⋎ b ∈ I1 ∩ I2. Thus
a⋎ b ∈ Sr(X). By Theorem 3.13, we obtain a ∈ Sr(X) or b ∈ Sr(X), which
is a contradiction. Hence, I1 ⊆ Sr(X) or I2 ⊆ Sr(X). Therefore, Sr(X) = I1
or Sr(X) = I2.

Note. The set ⊥X = {a ∈ L | a ⋎ x = 1, for all x ∈ X}, if x ⋎ a exists,
is called a co-annihilator of X. In the following theorem we investigate the
condition showing ⊥X = Sr(X) ∩ Sl(X).

Theorem 3.15. Consider L be a CKL-algebra with DNP. Then ⊥X =
Sr(X) ∩ Sl(X).

Proof: Assume a ∈⊥ X. Then for all x ∈ X, a ⋎ x = 1, and by Remark
3.11 and since x⋎ a = a⋎ x we have

1 = a⋎ x = (a → x) → x = (x → a) → a.

Thus, (a → x) → x = 1 and (x → a) → a = 1. Hence, a → x ≲ x
and x → a ≲ a. Also, by Proposition 2.5(ii), we have x ≲ a → x and
a ≲ x → a. Then a → x = x and x → a = a. Therefore, a ∈ Sr(X)∩Sl(X).
Conversely, suppose a ∈ Sr(X) ∩ Sl(X). Then a ∈ Sr(X) and a ∈ Sl(X).
Thus, for any x ∈ X, a → x = x and x → a = a. So (a → x) → x = 1 and
(x → a) → a = 1. By Remark 3.11, we have

(a → x) → x = (x → a) → a = a⋎ x = 1.

Hence, a ∈⊥ X. Therefore, ⊥X = Sr(X) ∩ Sl(X).
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Stabilizer topology

In this section, we use of the right and left stabilizers of an L-algebra and
produce a basis for a topology on it. Then we show that the generated
topology by this basis is Baire, connected, locally connected and separable
and investigate the other properties of this topology.

Definition 3.16. A map C : P(L) → P(L) is a closure operator if for
any X,Y ∈ P(L) we have

(C1) X ⊆ C(X),

(C2) If X ⊆ Y, then C(X) ⊆ C(Y),

(C3) C(C(X)) = C(X).
Theorem 3.17. Define ω : P(L) → P(L) such that ω(X) = (Sl(X))r, for
all X ∈ P(L). Then

(i) ω is a closure map.

(ii) X ⊆ ω(Y) if and only if ω(X) ⊆ ω(Y), for all Y ⊆ L.

(iii) γω = {X ∈ P(L) | ω(X) = X} is a basis for a topology on L.
Proof: (i) By Proposition 3.3(ii), (iii) and (iv) the proof is clear.

(ii) By (i) is clear.

(iii) Let γω = {X ∈ P(L) | ω(X) = X}. Obviously, ∅ ∈ γω. Also, by
Proposition 3.3(vi) and (vii), ω(L) = (Sl(L))r = Sr({1}) = L. Thus,
ω(L) = L, and so L ∈ γω. Now, suppose X,Y ∈ γω. Then ω(X) = X
and ω(Y) = Y. We show X ∩ Y ∈ γω. Since X ∩ Y ⊆ X,Y, by (i),
ω(X ∩ Y) ⊆ ω(X) and ω(Y). Thus, ω(X ∩ Y) ⊆ ω(X) ∩ ω(Y). In addition,
from X,Y ∈ γω, we have ω(X ∩ Y) ⊆ X ∩ Y . Moreover, by Proposition
3.3(iii), X ∩ Y ⊆ ω(X ∩ Y). Then ω(X ∩ Y) = X ∩ Y, and so X ∩ Y ∈ γω.
Therefore, γω is a basis.

Note. (i) According to the definition γω, clearly, (Stl(L))r = L and
(Stl(∅))r = ∅, so ∅,L ∈ γω and by Proposition 3.3(i), for any ∅ ≠ X ⊆ L,
1 ∈ (Stl(X))r, so for any X ∈ γω, 1 ∈ X. We have to notice that in general
form, X ∈ γω is not an ideal of L.
(ii) Since (Stl(∅))r = ∅, by Proposition 3.3(vi) and (vii), {∅, {1},L} ⊆ γω.

Definition 3.18. According to Theorem 3.17, the topological space, (L, τω)
is called a stabilizer topology.
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Note. Since in any CKL-algebra, Sr(X) ∈ Id(L), for any X ⊆ L, every
element of γω is an ideal of L.

Example 3.19.

(i) In Example 3.2(i), (L,→, 1) is an L-algebra. By Proposition 3.3(i)
and (vii), {1} ∈ ω(X), for all ∅ ̸= X ⊆ L. So, if 1 /∈ X, then
X /∈ γω. By some manipulations, we get γω = {∅,L, {1}}. Thus,
τω = {∅,L, {1}}. In addition, {1, b} /∈ γω, because Sl({1, b}) = {1}
and by Proposition 3.3(vii), Sr({1}) = L, then ω({1, b}) = L, and
so ω({1, b}) ̸= {1, b}.

(ii) Assume L is an L-algebra as in Examples 3.2(ii) and 3.10. Then
γω = {∅, {1}, {c, 1},L}.

(iii) Consider an L-algebra as in Example 3.4(iii). Then γω = {∅, {1},
{b, 1},L}.

(iv) According to Example 3.4(iv), γω = {∅, {1}, {b, 1}, {c, 1},L}.

Theorem 3.20. The stabilizer topology (L, τω) is
(i) connected.

(ii) locally connected.

(iii) Hausdorff space if and only if L = {1}.

Theorem 3.21. Let (L, τω) be a stabilizer topology. If ∅ ̸= X ⊆ L such
that 1 ∈ X, then X = L.

Proof: Suppose ∅ ̸= X ⊆ L such that 1 ∈ X. Consider x ∈ L. If x = 1,
then x ∈ X. Hence, X = L. Now, suppose 1 ̸= x ∈ L. Then there exists an
open subset U ∈ γω such that x ∈ U . Since 1 ∈ U , we have U∩(X\{x}) ̸= ∅.
Hence, x ∈ X, and so X = L.

Note. A topological space is called separable if it contains a countable
dense subset.

Corollary 3.22. (L, τω) is separable.

Proof: Since {1} ∈ γω, by Theorem 3.21, {1} = L. Hence, (L, τω) is
separable.
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Theorem 3.23. (L, τω) is Baire space, where L is a CKL-algebra.

Proof: Let U ∈ τω. Since L is a CKL-algebra, by Theorem 3.8, U ∈
Id(L) and so 1 ∈ U . Since 1 ∈ U by Theorem 3.21, U = L. Thus, every
open set of (L, τω) is dense. On the other side, for each collection of open
set Un, 1 ∈

⋂
n∈N

Un. Thus, by Theorem 3.21,
⋂

n∈N
Un = L, and so

⋂
n∈N

Un is

dense. Therefore, (L, τω) is Baire space.

In the following example, we show that (L, τω) is not a T0-space or
T1-space.

Example 3.24. In Example 3.2(i), γω = {∅,L, {1}}. Since b ̸= c, for b, c ∈
L, there is not U ∈ γω such that b ∈ U and c /∈ U . Therefore, (L, τω) is not
a T0-space. Obviously, (L, τω) is not a T1-space.

Theorem 3.25. Let L be a bounded CKL-algebra. If L has a cover of
Ui ∈ γω, for i ∈ I, then there exists i ∈ I such that Ui = L. Particularly,
L is compact.

Proof: Let L be bounded and {Ui}i∈I be a cover of L such that, for all
i ∈ I, Ui ∈ γω and L ⊆

⋃
i∈I

Ui. Since, for all i ∈ I, Ui ∈ γω, by Theorem

3.8, we have Ui ∈ Id(L). On the other side, L is bounded, then 0 ∈ L, and
so 0 ∈

⋃
i∈I

Ui. Thus, there exists i ∈ I such that 0 ∈ Ui. Since Ui ∈ Id(L)

and 0 ∈ Ui, by Proposition 2.9, Ui = L. Hence, there exists a finite family
of {Ui}i∈I such that L ⊆

⋃n
i=1Ui.

3.2. Generalization of stabilizers on L-algebras

In this section, we introduce the generalization of stabilizers on L-algebra
and investigate their properties and relation of them with stabilizers.

Definition 3.26. Let X,Y be two non-empty subsets of L. Then a right(left)
stabilizer of X with respect to Y are defined by

Str(X,Y) = {a ∈ L | for all x ∈ X, (a → x) → x ∈ Y},
Stl(X,Y) = {a ∈ L | for all x ∈ X, (x → a) → a ∈ Y}.

Example 3.27. According to Example 3.2(i), let X = {a, b} and Y =
{b, c, 1}. Then Str(X,Y) = {b, c, 1} and Stl(X,Y) = {b, c, 1}.
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Proposition 3.28. Let X,Y,Xi,Yi be non-empty subsets of L and I ∈
Id(L). Then the following statements hold:

(i) If Str(X,Y) = L or Stl(X,Y) = L, then X ⊆ Y.

(ii) If L is a CKL-algebra and I ⊆ Y, then Str(I,Y) = L and Stl(I,Y) =
L.

(iii) If L is a CKL-algebra, then Str(I, I) = L and Stl(I, I) = L.

(iv) Sr(X) ⊆ Str(X, I) and Sl(X) ⊆ Stl(X, I).

(v) If L is a KL-algebra, then Sr(X, {1}) = Str(X) and Sl(X, {1}) =
Stl(X).

(vi) If Xi ⊆ Yi and Xj ⊆ Yj , then Sr(Yi,Xj) ⊆ Str(Xi,Yj) and Sl(Yi,Xj)
⊆ Stl(Xi,Yj).

(vii) Str(X,
⋂
i∈I

Yi) =
⋂
i∈I

Str(X,Yi) and Stl(X,
⋂
i∈I

Yi) =
⋂
i∈I

Stl(X,Yi).

Proof: (i) Assume x ∈ X. Since X ⊆ L, we get x ∈ L, and so x ∈
Str(X,Y). Thus, for any a ∈ X, (x → a) → a ∈ Y. Consider a = x. Then
by (L1) we have

x = 1 → x = (x → x) → x ∈ Y.

Hence, X ⊆ Y. The proof of the other case is similar.

(ii) Clearly, Str(I,Y) ⊆ L. Assume x ∈ L. Then for any a ∈ I, by
Proposition 2.5(iii), a ≲ (x → a) → a. Thus by Proposition 2.9, (x →
a) → a ∈ I, and so (x → a) → a ∈ Y. Hence, x ∈ Str(I,Y), thus
L ⊆ Str(I,Y). Therefore, L = Str(I,Y). The proof of the other case is
similar.

(iii) By (ii) the proof is clear.

(iv) Let a ∈ Sr(X). Then for any x ∈ X, a → x = x and clearly, (a →
x) → x = 1. Since I ∈ Id(L), by (I1), 1 ∈ I and so (a → x) → x ∈ I. Thus,
a ∈ Str(X, I). Hence, Sr(X) ⊆ Str(X, I). The proof of the other case is
similar.

(v) Since {1} ∈ Id(L), by (iv), we have Sr(X) ⊆ Str(X, {1}). Assume a ∈
Str(X, {1}). Then for any x ∈ X, (a → x) → x ∈ {1}, and so a → x ≲ x.
By hypothesis and Proposition 2.3, x ≲ a → x, and so a → x = x. Hence,
x ∈ Sr(X). Therefore, Sr(X, {1}) = Str(X). The proof of the other case is
similar.
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(vi) Assume a ∈ Sr(Yi,Xj). Then for any x ∈ Yi, (a → x) → x ∈ Xj .
By assumption, Xi ⊆ Yi, thus for x ∈ Xi, we get (a → x) → x ∈ Xj .
In addition, Xj ⊆ Yj , so (a → x) → x ∈ Yj . Hence, a ∈ Str(Xi,Yj).
Therefore, Sr(Yi,Xj) ⊆ Str(Xi,Yj). The proof of the other case is similar.

(vii) Consider a ∈ Str(X,
⋂
i∈I

Yi). Then for any x ∈ X, we have (a →

x) → x ∈
⋂
i∈I

Yi. Thus, for all i ∈ I, we have (a → x) → x ∈ Yi. So,

a ∈ Str(X,Yi). Hence, a ∈
⋂
i∈I

Str(X,Yi). Therefore, Str(X,
⋂
i∈I

Yi) ⊆⋂
i∈I

Str(X,Yi). The proof of other side is similar.

In the following example we show that the condition CKL-algebra in
Proposition 3.28(ii) is necessary.

Example 3.29. According to Example 3.4(iii), L is not a CKL-algebra,
since

b → (c → a) = b → b = 1 ̸= b = c → a = c → (b → a).

Consider I = {1}, Y = {c, 1} and X = {a}. Then Str(X,Y) = {b, 1} ≠ L.

Proposition 3.30. Consider ∅ ̸= X,Y ⊆ L. If for any x, y ∈ L, (x →
y) → y = (y → x) → x, then Str(X,Y) = Stl(X,Y).

Proof: Let a ∈ Str(X,Y). Then for any x ∈ X, (a → x) → x ∈ Y. By
assumption, (x → a) → a ∈ Y, and so a ∈ Stl(X,Y). By the similar way,
Stl(X,Y) ⊆ Str(X,Y). Hence, Str(X,Y) = Stl(X,Y).

Proposition 3.31. Consider L be a CKL-algebra and I, J ∈ Id(L). Then
Str(I, J) ∈ Id(L).

Proof: By (L1), since for any a ∈ I, (1 → a) → a = 1 ∈ J, we get
1 ∈ Str(I, J). Assume a, a → b ∈ Str(I, J). Then for any x ∈ I, (a →
x) → x ∈ J and ((a → b) → x) → x ∈ J. Since x ∈ I, by assumption and
Proposition 2.5(ii), x ≲ a → x, and by Proposition 2.9 we get a → x ∈ I.
So, ((a → b) → (a → x)) → (a → x) ∈ J. In addition, by Proposition
2.5(viii) we have b → x ≲ (a → b) → (a → x), and by Proposition 2.5(vii),
we have

((a → b) → (a → x)) → (a → x) ≲ (b → x) → (a → x),
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Since ((a → b) → (a → x)) → (a → x) ∈ J and J ∈ Id(L), by Proposition
2.9, (b → x) → (a → x) ∈ J. Moreover, by Proposition 2.5(xii), a → x =
((a → x) → x) → x. Thus

((a → x) → x) → ((b → x) → x) = (b → x) → (((a → x) → x) → x)

= (b → x) → (a → x) ∈ J.

From J ∈ Id(L) and (a → x) → x ∈ J, by (I2), we have (b → x) → x ∈ J.
Hence, b ∈ Str(I, J). Therefore, Str(I, J) ∈ Id(L).

Theorem 3.32.

(i) For any I, J ∈ Id(L), Str(I, J) ∩ I ⊆ J.

(ii) If L is a CKL-algebra, then Str(I, J) is the greatest ideal of L such
that Str(I, J) ∩ I ⊆ J.

Proof: (i) Let a ∈ Str(I, J)∩I. Then a ∈ I and a ∈ Str(I, J). Thus for any
x ∈ I, (a → x) → x ∈ J. Consider x = a, so by (L1), (a → a) → a = a ∈ J.
Thus, Str(I, J) ∩ I ⊆ J.
(ii) By (i), obviously, Str(I, J) ∩ I ⊆ J. Suppose there exists K ∈ Id(L),
where K ∩ I ⊆ J. We show that K ⊆ Str(I, J). For this, assume a ∈ K and
x ∈ I. Thus by Proposition 2.5(ii) and (iii), a, x ≲ (a → x) → x. Since
I,K ∈ Id(L), by Proposition 2.9, we get (a → x) → x ∈ K ∩ I, and so
(a → x) → x ∈ J. Thus, a ∈ Str(I, J), and so K ⊆ Str(I, J). Therefore,
Str(I, J) is the greatest ideal of L such that Str(I, J) ∩ I ⊆ J.

Corollary 3.33. Assume L is a CKL-algebra. Then ⟨Id(L),⊓,⊔, {1},L⟩
is a relative pseudo-complement lattice where Str(I, J) is the relative pseudo-
complement of I with respect to J in Id(L) such that I⊓J = I∩J and I⊔J
is a generated ideal of L contains I ∪ J.

Proof: By Theorem 3.32 and [5, Definition 3.5 and Proposition 3.6], the
proof is straightforward.

4. Conclusion

The aim of this paper is to introduce the notion of stabilizers in L-algebras
and develop stabilizer theory in L-algebras. In this paper, the notions of
left and right stabilizers are introduced and some properties related to them
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has been investigated. Then, the relations among stabilizers, ideals and co-
annihilators are discussed. Also, it was shown that the set of all ideals in
a CKL-algebra forms a relative pseudo-complemented lattice. Also, it was
proved that all right stabilizers in CKL-algebra are ideals. Then by using
the right stabilizers, a basis for a topology on L-algebra was produced.
Finally, it was proved that the generated topology by this basis is Baire,
connected, locally connected and separable and the other properties of this
topology are investigated.

In future, we can introduce the notions of fuzzy left and right stabilizers
and investigate their related properties and discuss the relations among
fuzzy stabilizers, fuzzy ideals and fuzzy co-annihilators.

Acknowledgements. The authors are very indebted to the editor and
anonymous referees for their careful reading and valuable suggestions which
helped to improve the readability of the paper.
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