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Abstract

Regions-based theories of space aim—among others—to define points in a geo-
metrically appealing way. The most famous definition of this kind is probably
due to Whitehead. However, to conclude that the objects defined are points in-
deed, one should show that they are points of a geometrical or a topological space
constructed in a specific way. This paper intends to show how the development
of mathematical tools allows showing that Whitehead’s method of extensive ab-
straction provides a construction of objects that are fundamental building blocks
of specific topological spaces.
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1. Introduction

Imagine yourself trying to read out space’s structure from the flux of data
that reach your senses. After Russell [38] we might say that you are sub-
merged in the perspective space—the space of private experience, a small
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fragment of the world. Yet your ambitions go way beyond that. You aim
at a general mathematical theory that will reflect the essential, structural
properties of a large fragment of what we know as the universe. You know
it is feasible. Faithful and efficient systems of geometry are exactly such
theories, and they have been with us since antiquity. Developed at the
outset as tools to handle practical problems of relatively small commu-
nities, they turned into theories describing universal properties of larger
fragments of space, including the properties of the universe as such after
the emergence of non-Euclidean geometries. The rise of topology has been
driven by the search for space’s most general features, as well as for the
solution of real-world problems, Euler’s Königsberg bridges puzzle tour to
be one of them. Purely mathematical enterprise at the beginning, topol-
ogy flourished as a branch of mathematics with applications in macro- and
micro-scale. All those achievements were obtained by experiencing frag-
ments of our world only but turned out to be so powerful as to describe its
most general properties.

Put yourself into the shoes of an admirer of geometry and topology who,
at the same time, finds one thing to be a bit troubling—the fundamental
constituents of geometrical and topological spaces are points, highly ide-
alized, dimensionless objects that cannot be found in the space of private
experience. Thus you ask yourself the question: could points be mathe-
matically satisfactory explained employing the objects from the perspective
space?

One of the very first endeavors toward a positive answer to the ques-
tion was due to Alfred N. Whitehead [46, 47, 48]. He presented various
constructions of points out of which the one from Process and reality was
best developed and gained the attention of the community of logicians,
mathematicians, and philosophers.1 However, having defined points, the
English mathematician never bothered himself to show that the entities
constructed are building blocks of any space.

This paper’s goals are very modest, as we aim to show how the de-
velopment of formal methods from the XXth century lets us carry out
Whitehead’s construction in a rigorous mathematical manner and formu-
late a partial positive solution to the problem of existence of non-trivial

1To tell the truth, the constructions of points from [46, 47] were wrong, as observed
by de Laguna [7]. The reason was that initially, Whitehead worked with part of relation
only, and de Laguna suggested—and rightly so—going beyond it and adopting the notion
of containing (the modern non-tangential inclusion) as one of the primitives.
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topologies based on Whitehead points. In light of this, the paper does not
provide any new groundbreaking results in the field of region-based topol-
ogy but rather shows how various results obtained within it allow us to
draw a positive conclusion concerning Whitehead points: not only do exist
structures with Whitehead points, but these points are also building blocks
of topological spaces that were constructed in the area of representation
theory for Boolean algebras and their extensions.

2. The informal construction

Observe that the data you receive through your senses, concerning 
the spatial entities, contain various objects that we may collectively call 
regions. Both the laptop on your desk and the courtyard you see from 
the window of your office are regions, chunks of space. Those chunks are 
related to each other in various ways, of which two seem to be the most 
general: (a) one region may be part of another, as the screen is part of 
the laptop, (b) two regions may touch each other, as in the case of the 
laptop and the surface of the desk, or can be separated, like the pen in 
your backpack and the cup of coffee standing next to your left hand. Next 
to these, we have the idea of points as precise locations in space. These 
can be represented as collections of shrinking regions in space, tapering 
down to the precise locations. One of the main driving forces of region-
based theories is to capture this vague idea through parthood and contact.

One way is to write down axioms that could be justified by how we
seem to experience regions and their relations. We may engage both part-
hood and contact, as many authors did, or only just one of them, as was
done originally by Whitehead [48]. Let ‘⊑’ and ‘C’ be the two symbols that
denote, respectively, parthood and (binary) contact. We read ‘x ⊑ y’ as x
is part of y and ‘x C y, as x is contact with y or x touches y. The most
reasonable axioms for the former are probably those for one of the possible
systems of mereology2 that is a faithful representation of spatio-temporal
properties between regions and their parts. For contact, the standard ax-
ioms to be assumed are the following: every region is in contact with itself:
x C x, the contact is symmetrical: if x C y, then y C x; if x C y and y is part
of z, then x C z, which intuitively means that if x touches y, then every
region of which y is part must also touch x. This is the axiomatic basis.

2See e.g. [31, 32] and [44] for expositions of various mereological theories.



66 Rafał Gruszczyński

Figure 1. Point as a limit of shrinking system of regions

Other axioms may be introduced, and we will get back to this in the sequel.
The way of proceeding directly from the sense data to axioms of a theory
can be named, after Pratt-Hartmann [34], the empiricist approach.

Whitehead’s [48] characterization of contact and definition of point ex-
tends over six pages of Process and reality and is preceded by 24 assump-
tions and 15 other definitions, a solid overkill, to say the least. Let’s get
straight to the bottom of Whitehead’s points as easy as it gets without delv-
ing into his philosophical motivations. For these, we refer the interested
reader to the excellent exposition of Varzi [45].

The English mathematician [48] follows the idea of the point from Fig-
ure 1. To do this properly, one must first say what it means for one region
to be a non-tangential part (we will often use the phrase ‘well-inside’ as a
synonym of ‘non-tangential inclusion’) of another: it is the case when the
former is not in contact with the complement of the latter3 or, as we will
often say, is separated from the complement (see Figure 2).

3If we are working in the classical mereology we have to be careful what we mean by
the complement as the zero region is absent. See [31] for details. In the case the main
theory does not assume a region that is the largest region, the notion of the complement
may have no sense at all, and we have to define the situation from Figure 2 in a different
way. This can be done, e.g. by requiring that y does not touch any region outside x.
We refer the reader again to the paper by Varzi [45].
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xy

Figure 2. Region y is a non-tangential part of region x.

On the Whiteheadian road to points, we begin with the definition of
abstractive sets of regions, i.e., those sets that:

(a) do not have any minimum with respect to part of relation, that is
every region constituting an abstractive set has a proper part that
is also in the set,

(b) their any two distinct elements are comparable with respect to non-
tangential part relation.

The idea is that abstractive sets represent objects such as two-dimensional
figures, planes, one-dimensional lines or segments (see Figure 3), and—last
but not least—points, as the readers will convince themselves looking at
Figure 1 again. The question is how to identify these abstractive sets that
represent points? To this end, we define the covering relation between ab-
stractive sets as follows: A covers B (in symbols: A ⪰ B) iff for every
region x in A there is a region y in B such that y is part of x. Now, if A
covers B and vice versa, both sets represent the same object, and we can
say those sets are equivalent. It is routine to verify that the equivalence
of abstractive sets is indeed an equivalence relation: reflexive, symmetri-
cal, and transitive. An equivalence class, say [A], represents a unique object
and therefore deserves to be called a geometrical object. Still, it does not
have to satisfy our intuition of point as dimensionless, «infinitely» small
entity. How to identify these geometrical objects that do? A way out is
via comparing geometrical objects in the following manner: [A] � [B] if
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and only if A ⪰ B. The relation � is a partial order, and if the partially
ordered set of all geometrical elements happens to have minimal elements,
then these elements truly deserve the name of points.

Figure 3. A small fragment of an abstractive set of two-dimensional
rectangles representing a one-dimensional segment, marked above by dots.

Yet do they? How can we be sure that these are good candidates for
points? After all, we have nothing to support this claim except for our
intuition: when we think about regions as extended objects of the spatio-
temporal continuum, ordered by the aforementioned armory of relational
concepts, then what we defined as points are abstract objects that are,
in a way, so «tiny» that they must be good representations of what we
may ever want to declare points. So far, so good, the problem is that the
intuition may fail, and the best way to avoid failure is to put it to strict
mathematical tests. To do this, we need proper formal machinery, and
thus we have to leave empiricism behind and take the path of rationalism,
as characterized by Pratt-Hartmann [34].

3. The cornerstone

How can we test objects for «pointhood»? The best method we have is that
of the representation theory known from universal algebra, which allows us
to show that given objects from some abstract or concrete algebraic struc-
ture are indeed points. The idea of representation is a formal embodiment
of reducing the unfamiliar and abstruse to familiar and comprehensible.
Or turning abstract into concrete.
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To get the feeling of the mechanism of representation, let us divide the 
class of Boolean algebras into two subclasses of (a) abstract and (b) con-
crete Boolean algebras, respectively. Abstract BAs are defined as specific 
structures with a distinguished domain whose elements are to satisfy cer-
tain conditions (axioms), usually for the binary operations of meet and 
join, the unary operation of complement, and the two individual constants: 
zero and one (unity). In the case of concrete BAs, we have a fixed set X, 
and take as the domain of the algebra a family S of its subsets that contains 
X and ∅, and is closed for the set-theoretical operations of intersection, 
union, and complement. Such a family is called a field of sets. More 
precisely, a concrete BA may be identified with a pair ⟨X, S⟩ such that S is 
a field of sets over X (see [43]). It is evident that every concrete BA 
is an abstract one. It is also true that every abstract algebra is isomor-
phic to a concrete algebra, although this statement is far from obvious. 
It was proved by Marshall Stone [42], who created the representation 
method relevant from this paper’s point of view.

Stone’s work’s motivations were purely mathematical—he aimed to un-
derstand what Boolean algebras are and how they relate to other math-
ematical entities. The first step towards understanding was to show that
given any (abstract) Boolean algebra B we can construct (in a canonical
way) a concrete algebra ⟨X,S⟩ that is isomorphic to B.

With an algebra B at hand, everything we have at our disposal is this
algebra (plus various mathematical tools that are normally used). The
situation is analogous to a construction of a term model of a first-order
theory by means of the Henkin method—we start with syntactical data,
and we turn it into a model of the theory. To tell the truth, Henkin’s
construction may be viewed as a special case of the Stone theorem (see
e.g., Exercises 4, 5, and 6 in pages 37–38 of [26])

With every—either abstract or concrete—algebra, there is associated
the notion of a filter, a non-empty subset F of (the domain of) B that
does not contain the zero element, is upward closed (in the sense of the
standard Boolean order), and is closed for the binary meet operation.

The special place in the representation theory is occupied by ultrafilters,
i.e., filters that are maximal in the family of all filters (in the sense of set-
theoretical inclusion), or equivalently, filters F that satisfy the following
condition: for any x ∈ B, either x is in F or its Boolean complement −x
is in F . Given an algebra B, we will denote the family of all its ultrafilters
by Ult(B), and we are going to use the letter ‘U ’ as ranging over Ult(B).
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Applying set-theoretical machinery, we can prove that every non-zero
object x ∈ B is an element of an ultrafilter. Moreover, we can show that if
x and y are distinct, then there is an ultrafilter U that contains exactly one
of these. Therefore, every object in B can be unequivocally represented by
all these ultrafilters to which it belongs. More formally, with every Boolean
algebra B we may associate an injective operation U : B → P(UltB) (from
the domain to the power set of the family of all ultrafilters of B) such that
U (x) := {U ∈ Ult(B) | x ∈ U } (the Stone mapping). It is routine to
verify that the image of this operation:

U [B] = {U (x) | x ∈ B}

is a field of sets. Indeed, Ult(B) = U (1) ∈ U [B] and ∅ = U (0) ∈ U [B].
U [B] is closed for intersections and unions since:

U (x) ∩U (y) = U (x · y) and U (x) ∪U (y) = U (x + y) ,

where · and + are the Boolean operations of meet and join, respectively;
and the closure for set-theoretical complementation stems from the follow-
ing equivalence:

U /∈ U (x)←→ x /∈ U ←→ −x ∈ U ←→ U ∈ U (−x) . (3.1)

To conclude, to an abstract Boolean algebra B we can always associate
a concrete isomorphic algebra ⟨Ult(B),S⟩ (with S := U [B]), that is iso-
morphic with B, its canonical representation. This is the content of the
set-theoretical version of the Stone representation theorem.

However, the construction may be carried on to a topological represen-
tation. The main advantage of this is that it allows using spatial intuitions
to draw consequences about the algebraic properties of Boolean algebras.
In the case of set-theoretical representation above, the algebra B is shown
to be isomorphic to a field of sets. In the case of the topological represen-
tation, it is proven that the field consists of distinguished—in one way or
another—subsets of a topological space.

With respect to these, two crucial observations are that (a) we may treat
ultrafilters as points—building blocks of point-based topologies, (b) with
the topological structure induced by sets U (x) taken as basic open sets.
The fact that U [B] satisfies the conditions of a basis stems from earlier
observations for this family: every ultrafilter is in U (1), and U (x)∩U (y) =
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U (x ·y). Let S be the topology on UltB with U [B] as a basis4, the Stone
topology. The pair ⟨Ult(B), S ⟩ bears the name of the Stone space for the
algebra B.

Let us have a look at the basic features of Stone spaces. Firstly, observe
that given any open basic set U (x), it is a straightforward consequence of
(3.1) that its complement is open too. This means that the basis for S
is built out of sets that are both closed and open (and are called clopen
for this reason). Such spaces are called zero-dimensional, and they are
not very intuitive from the point of view of properties of the perspective
space. If we take, e.g., the three-dimensional Cartesian space that serves
as the standard model of the (static) world around us, then we only find
two clopen sets: the whole space R3 and the empty set. For the other

1

x

−x

p

Figure 4. In Stone spaces, points cannot be located on boundaries
between regions, as there are no boundaries. The point p is either a point

of x or a point of the complement of x.

crucial property of Stone spaces, look at Figure 4. The intuition from the
perspective space is that when we divide a region into two parts, there is
such a thing as the boundary between the parts, and there are points that
are located on the boundary. However, this is impossible in Stone spaces.
The point p from the figure is an ultrafilter. Therefore either x is in p, or

4Recall that a basis for a topology on the set X is a family B of subsets of X such
that X =

⋃
B and for every B1, B2 ∈ B and every x ∈ B1 ∩ B2 there is B3 ∈ B

such that x ∈ B3 ⊆ B1 ∩ B2.
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the Boolean complement of x is in p. In topological parlance, we say that
the space is disconnected. For Stone spaces, the discontinuity phenomenon
takes an extreme form: the only connected components of those spaces are
singletons of points, i.e., the spaces are totally disconnected. Again, this
is not a very intuitive property from the point of view of the perspective
space. Actually, for the class of compact and Hausdorff spaces (a larger
class than that of Stone space), the two properties are equivalent, in the
sense that every compact Hausdorff space is zero-dimensional iff it is totally
disconnected (see [26, Theorem 7.5, p. 97]).

The aforementioned compactness is—in a way—a topological version of
finiteness: a space X is compact if for every family of open sets that covers
the whole space, there is its finite subfamily that covers X either. As every
open set is the sum of some family of basic open sets, we may replace ‘open’
with ‘basic open’ in the definition. In the case of Stone spaces, compactness
is a consequence of the Ultrafilter Theorem, which says that every set F
of elements of a BA such that F has the finite intersection property is
contained in an ultrafilter, where F has the finite intersection property iff
any finite subcollection of F has the non-zero meet: if x1, . . . xn ∈ F , then
x1 · . . . · xn ̸= 0. Using this, it is relatively easy to show that the Stone
space Ult(B) is compact.

Another key feature of Stone spaces is the Hausdorff separation axiom:
any two distinct points x and y can be separated by open sets, in the sense
that there are disjoint open set U and V around x and y, respectively. If
ultrafilters U1 and U2 are distinct, there must be an x which is in only one
of them, say U1. But then −x must be in U2, and thus U (x) and U (−x)
are disjoint (basic) open sets around the two ultrafilters, i.e., points of
the Stone space.

To conclude, with every Boolean algebra B, we can associate a topo-
logical space, the Stone space of B, which is Hausdorff, compact, and
zero-dimensional.5 Moreover, the algebra B is isomorphic to the family
CO(Ult(B))) of clopen sets of this space. Thusly, there is a way from
Boolean algebras to topological Stone spaces, i.e., structures with certain
spatial data.

5Topological spaces that have these three properties are often called Boolean spaces,
and the name is used with the intention to treat such spaces somewhat independently
from the Stone spaces of ultrafilters. However, as we will see, every Boolean space X
is a Stone space, in the sense that we can associate with X a Boolean algebra B whose
Stone space Ult(B) is an exact copy of X.
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However, there is also a way in the other direction. Any topological 
space X carries a Boolean algebra CO(X) of all its clopen subsets. In the 
case of Euclidean spaces Rn, this algebra will have only two elements: 
the whole space Rn and the empty set. More generally, every connected 
space will carry the two-element Boolean algebra of its clopen subsets. 
Things get interesting if we limit our attention to Stone spaces only. 
In such a case, we obtain a deep dependence between the class Stone of 
all Hausdorff, compact, and zero-dimensional spaces, and the class BA 
of all Boolean algebras.

Let us start with a Boolean algebra B. As we have seen, there is
a topological space that can be naturally associated with B, the Stone
space Ult(B). This space, on the other hand, carries a Boolean algebra
of its clopen subsets CO(Ult(B)), that is isomorphic to B, i.e., B and
CO(Ult(B)) cannot be structurally distinguished.

BA B Ult(B) Stone

CO(Ult(B)) BA

∋

i i−1

∈

∈

Figure 5. Any Boolean algebra B is indistinguishable from the Boolean
of clopen sets of the Stone space of B.

On the other hand, if we start from a Stone space X, then CO(X)
is a Boolean algebra, and Ult(CO(X)) is its Stone space, that is, as the
reader could expect, indistinguishable (homeomorphic is the technical jar-
gon) from X.

Stone X CO(X) BA

Ult(CO(B)) Stone

∋

h h−1

∈

∈

Figure 6. Any Stone space B is indistinguishable from the Stone space
of the Boolean algebra CO(X) of the clopen sets of X.
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Thus, Stone [42] demonstrated that there is a kinship between the world
of algebraic structures and the world of topological spaces. In particular,
when we focus on Boolean algebras and Stones spaces, the bondage is so
strong that we can say they are two sides of the same coin or two aspects
of the same abstract phenomenon.6

algebra topology

F

G

Boolean algebras

Stone spaces

Ult

CO

Figure 7. Boolean algebras and Stone topological spaces are very closely
related.

6The kinship also extends to homomorphisms between algebras and continuous map-
pings between the spaces, in the sense that to every homomorphism between BAs corre-
sponds a continuous mapping between their Stone mapping, and vice versa—with every
continuous mapping between Stone spaces, there is associated a homomorphism between
the algebras of their clopen sets. It is, roughly, the content of the famous Stone duality
between the categories of Boolean algebras with homomorphisms, and Stone spaces with
continuous mappings. For details, see, e.g., [24].
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4. The extension: De Vries algebras

If we look at the diagram in Figure 7 we see that there are two very natural
ways towards extending Stone results: we may encompass a larger (or
a different) class of topological spaces, but we may also tinker with algebras
taken into account. One of such tinkerings may, in particular, involve
extending the signature (the non-logical language).

Two ways

extension
of the class
of spaces

extension
of the

signature

frames and
locales

contact
algebras

De Vries
algebras

Figure 8. Possible extensions of the Stone duality

The extension of the class of topological spaces leads to a fruitful and
fascinating theory of frames and locales (see, e.g., [24], [29, 30]), which in
a nutshell can be described as a region-based theory of space in which the
notion of open set is taken as basic. It is probably most developed among all
region-based approaches. Yet, its objectives and main motivations (for the
exposition of these see, e.g., [25]) are not, at least directly, connected to the
leading topic of this paper.7 This is mainly due to the fact that we want to

7Mormann [28] presents a solution of what he calls a Whitehead’s problem in the
framework of Heyting algebras and continuous lattices, structures that are of particular
importance in the theory of frames and locales. However, his paper does not mention
Whitehead points and instead constructs topological spaces whose points are Dedekind
ideals (in the terminology adopted by us further in the paper, these could be called round
ideals). This is because Mormann defines the Whitehead problem as constructing spaces
of points from regions of a uniform dimension that sets of points can faithfully represent.
If the reader wishes, they may think about our paper as presenting a solution to the
same problem yet utilizing the specific technique of conjuring up points put forward in
Process and reality.
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narrow down the notion of region to those interpretations that are faithful
models of fragments of the perspective space, while the notion of open set
is probably the most encompassing among primitive concepts of point-free
theories.

Thus, we will follow the way of the signature extensions. The reasons
to do this may vary, and our primary motivation is that the language of
Boolean algebras does not differentiate between situations in which regions
are incompatible (in the sense that their Boolean product is zero) and
separated, and those where regions are incompatible but touch each other
(see Figure 9). Equivalently, Boolean algebras cannot discern the differ-
ence between the situation in which x is part of y but does not touch the
complement of y, and the one in which x is part of y and touches the com-
plement of y, i.e., from the point of view of Boolean algebras there is no
difference between the two scenarios in Figure 10.

x

y

u

v

Figure 9. The regions x and y are incompatible and touch one other,
while u and v are incompatible and separated.

Again, there may be different reasons to ponder Boolean algebras’ ex-
tensions, either with the touching relation or well-inside relation. As we
already saw in Section 2, proper (whatever it means now) construction of
points may require it. Nevertheless, the reasons may be less philosophical
and more practical as in the case of de Vries’s work [8], which will serve as
our starting point towards the justification of Whitehead’s construction.

De Vries’s aim was mathematical at heart: algebraization of the notion
of compactness of a topological space. De Vries’s algebras are just (com-
plete) Boolean algebras extended with a binary relation ≪ whose intended
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x

y

u

v

Figure 10. The region x is part of y but touches the complement of y,
while u is well-inside v.

interpretation is non-tangential inclusion (well-inside part). The axioms
concerning ≪ are the following:

1 ≪ 1 , (DV1)
x ≪ y −→ x ≤ y , (DV2)

x ≤ y ∧ y ≪ z ∧ z ≤ w −→ x ≪ w , (DV3)
x ≪ y ∧ x ≪ z −→ x ≪ y · z , (DV4)

x ≪ y −→ −y ≪ −x , (DV5)
x ≪ y −→ ∃z (x ≪ z ∧ z ≪ y) , (DV6)

(∀x ̸= 0)(∃y ̸= 0) y ≪ x . (DV7)

These may not be self-evident at first sight, so let us explain them in
a proper setting. The concrete De Vries algebras can be obtained from reg-
ular open algebras of κ-normal topological spaces.8 A subset x of a topo-
logical space is regular open if x is equal to the interior of its closure:
x = Int Cl x.9 From a geometrical point of view, regular open sets of Rn

are those open sets that do not have «surprises» in the form of cracks, holes,

8A space X is κ-normal (or weakly normal) iff any pair of its disjoint regular closed
sets can be separated by open sets (see [40]).

9Alternatively, regular open sets can be characterized as regular elements in the
lattice Ω(X) of all open sets of X. Such a lattice is a Heyting algebra and thus may
have elements that are not regular, in the sense that if x∗ is a relative complement of x,
then x∗∗ ≰ x (the reverse inclusion is always true). Thus x is regular open if x = x∗∗.
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punctures, or snags. For this reason, they are sometimes considered good
candidates for mathematical models of regions of the perspective space.10

As is well known, given a topological space X, the family of RO(X) of
its regular opens is a complete Boolean algebra with the operations defined
as follows:

U · V := U ∩ V U + V := Int Cl(U ∪ V ) − U := Int(X \ U)∨
i∈I

Ui := Int Cl
⋃
i∈I

Ui

∧
i∈I

Ui := Int
⋂
i∈I

Ui .

If we interpret the non-tangential inclusion in the standard way as:

U ≪ V :←→ Cl U ⊆ V ,

and assume that space X is κ-normal, then we will see that RO(X) is a De
Vries algebra, with (DV6) (the so-called interpolation axiom) corresponding
to the κ-normality of the space, and (DV7) to its weak version of regularity
according to which every non-empty open set V has a nonempty set U
whose closure is a subset of V . Since there are κ-normal spaces, there are
De Vries algebras.

To pin down points in a De Vries algebra, the Stone-like technique of
treating points as sets of regions is applied. To this end, the family of round
filters is distinguished, i.e., filters F that have the following property:

(∀x ∈ F )(∃y ∈ F ) y ≪ x .

It is easy to see that every De Vries algebra must have a round filter: {1},
trivial as it is. A less trivial example may be obtained if there is a non-zero
region distinct from the unity, say x. Then, by (DV7) and the Axiom of
Dependent Choices, we can come up with a sequence of non-zero elements:

. . . x2 ≪ x1 ≪ x0 = x ,

and the filter generated by the sequence: F := {y | (∃n ∈ ω) xn ≪ y}
must be round. An easy application of the Kuratowski-Zorn lemma 

10Nowadays the class of all regular open sets of Rn is usually considered too large to
model regions of the surrounding world. Various authors put forward different limita-
tions on it, see, e.g., [9, 10, 27, 33, 39].
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y
x

z

Figure 11. A geometrical interpretation of (DV6) axiom: between any
two regions x and y such that x is well-inside y we can squeeze in a third

region well-above x and well-inside y.

spaces.11

Let us have a look at two concrete examples. Take the real line R,
which is a normal (and the more so κ-normal) space. Consider the family
of intervals {(−1− 1/n, 1 + 1/n) | n ∈ ω+} whose elements are regular open
in R. The filter F generated by this family is round. However, it is not
maximal in the family of round filters. We can extend {(−1− 1/n, 1 + 1/n) |
n ∈ ω+} with some regular open sets well-inside (−1, 1) which will result
in a proper extension of F . Thus F does not represent a point, which is
good, since what all the regions in F have in common is the interval (−1, 1),
a continuum of points. For a positive example, take any point x ∈ R and let
RO(Ox) be the family of all regular opens around x. RO(Ox) is obviously
a filter, and since the real line is regular, it is round. But it must also be
maximal. For suppose F is a round filter extending RO(Ox), and let V
be an element of F but not of RO(Ox). Therefore x /∈ V . F is round,
so there is M ∈ F with Cl M ⊆ V . Thus, regularity entails existence of a
regular open set R around x that is disjoint from M . But both R and M

11The original de Vries [8] terminology was different: he called concordant and maxi-
mal concordant filters round filters and maximal round filters, respectively. With other
authors, the reader may also encounter terms contracting and maximal contracting fil-
ters. The latter are often called ends in the framework of proximity approach the
mereotopology. We have decided to use ‘round’ as it is currently the most established
practice among researchers within the field.

shows that there exist maximal round filters, and they are meant to be 
points of
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are elements of F , so F is an improper filter (i.e. F = RO(X)). Thus
RO(Ox) is maximal round filter. This is good since the family of all regular
open sets around x should uniquely determine x.

Due to the latter example, we may be tempted to think that De Vries
might have had a geometrical intuition of point similar to Whitehead’s.
However, a certain example shows that the ideas of compactness and com-
pactification were the leading ones for the Dutch mathematician, and it’s
a point of discrepancy between his and Whitehead’s approach. Consider
the following chain of regions of RO(R): {(n, +∞) | n ∈ ω}. The filter F
that it generates is round and thus is contained in a maximally round filter
F ′, a point. This filter represents a point at infinity in R, since it cannot
be RO(Ox) for any real number x. See also Figure 12 for a geometrical
intuition in the case of two-dimensional space.

Figure 12. De Vries points involve points at infinity.

Why do we maintain that this example shows that Whitehead and
De Vries had different objectives? The thing is that if we are to treat points
as unique locations in the perspective space, points at infinity do not fit into
this. Figuratively speaking, they are too far from our experience to enter
the domain of points. At the very end of Section 7 we will demonstrate
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that the above constructed maximal contracting filter is not a point in the
sense of Whitehead.

Maximal round filters are exactly those round filters that satisfy the
following condition:

x ≪ y −→ −x ∈ F ∨ y ∈ F , (†)

or, as the readers may easily convince themselves:

x C/ y −→ −x ∈ F ∨ −y ∈ F , (‡)

where contact is defined as:

x C y :←→ ¬(x ≪ −y) .

On the other hand, for the whole class of filters of a Boolean algebra we
have that F (not necessarily round) is an ultrafilter if and only if:

x · y = 0 −→ −x ∈ F ∨ −y ∈ F .

Therefore, if we have additional information that ≪ coincides with ≤ (or,
equivalently, contact is overlap), the family of maximal round filters is
exactly the family of ultrafilters since every region is incompatible with its
complement. However, in general, we cannot exclude existence of points
living on the borders of regions and their complements, as we did in the
case of spaces of ultrafilters (see figures 4 and 13). Even more can be
said: if x is in contact with −x, then there is a maximally round filter E
such that x /∈ E and −x /∈ E . This leads to an interesting conclusion: if
every non-zero region is in contact with its complement, then the space of
maximal round filters should be connected (if only there are such spaces).

There are, of course. The standard Stone-like assignment E : B →
P(MRF(B)), where B is a De Vries algebra and MRF(B) is the set of all
its maximal round filters leads to the family B := {E (x) | x ∈ B} which
satisfies the standard properties of a basis. The spaces ⟨MRF(B), O⟩ thus
constructed are Hausdorff, since if E1 ̸= E2, and there is a region x in, say
E1 \ E2, then there is a region y ∈ E1 well-inside x. By (†) either −y ∈ E2
or x ∈ E2, and since the second disjunct does not hold, the first is true.
But E (y) ∩ E (−y) = ∅, and E1 ∈ E (y) and E2 ∈ E (−y).
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1

x

−x

p

Figure 13. In spaces of maximally round filters, points may inhabit the
boundaries of regions and their complements, if the regions and their

complements are in contact, in the sense that ¬(x ≪ x).

gist of the paper with unnecessary technicalities. The important thing is
that to every De Vries algebra corresponds a certain topological space that
is Hausdorff compact. Similarly to the situation for Boolean algebras and
Stone spaces, given a topological space X that is Hausdorff compact, its
family of RO(X) with≪ interpreted as the topological well-inside inclusion
must be a De Vries algebra. Again, if we start with B, go to MRF(B) and
to RO(MRF(B)), then we have that either B can be densely embedded in
RO(MRF(B)), or is isomorphic with RO(MRF(B)), if complete. Since
we changed the class of algebras from Boolean to De Vries we need an
appropriate notion of isomorphism that remains essentially the same as
the standard one, with an extra condition stipulating that ≪ is preserved
in the following sense:

x ≪ y ←→ h(x) ≪ h(y) .

Every MRF(B) must also be compact. The proof is slightly more
complicated than the one for Stone spaces, and we skip it not to mar the
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We will call the mapping h De Vries isomorphism. To repeat, if the
initial algebra B is not complete, then the mapping E : B → RO(MRF(B))
is a dense De Vries embedding12 of B, and in the case B is complete, the
same mapping is a De Vries isomorphism.

DV B MRF(B) KHaus

RO(MRF(B)) DVc

∋

E

∈

∈

Figure 14. Let DV be the class of De Vries algebras, and KHaus the
class of compact topological spaces. Any De Vries algebra embeds densely
into the algebra of regular open sets of the compact Hausdorff space for B.

DVc B MRF(B) KHaus

RO(MRF(B)) DVc

∋

E E −1

∈

∈

Figure 15. Let DVc be the class of complete De Vries algebras. Any its
element B is indistinguishable from the De Vries algebra of regular open

sets of the compact Hausdorff space for B.

To conclude, De Vries, through pursuing his algebraic objectives, showed
a way to represent structures with a version of a point-free topological near-
ness as fully-fledged topological spaces. In the next section, we will see how
it helps to understand another classical point-free topology by a Polish lo-
gician Andrzej Grzegorczyk, which on the other hand, will let us show that
Whitehead points (or at least some of them) are indeed points of a certain
class of topological spaces.

12The embedding E is dense in quite a strong sense, that is if x, y ∈ RO(MRF(B))
are such that x ≪ y, then there is z ∈ B for which x ≪ E (z) ≪ y.
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KHaus X RO(X) DVc

MRF(RO(X)) KHaus

∋

h h−1

∈

∈

Figure 16. Any compact Hausdorff topological space X
is homeomorphic to the compact Hausdorff space of the complete

De Vries algebra of regular open sets of X.

5. The criterion of points

From the above, we can see that we have a general method of constructing
spaces from algebraic data via mimicking Stone’s technique to treat points
as subsets of the domain. So what would it mean to achieve the White-
head’s goal?, i.e., explain points in a geometrically appealing way. On the
intuitive level, Whitehead’s points are collections of regions related to each
other via spatially motivated relations. The intuition may be turned into
a precise notion in two steps: firstly, by imposing an algebraic structure on
regions to reflect the most general properties of the perspective space (i.e.,
extend the signature); secondly, by showing that the Whitehead’s minimal
geometrical objects reconstructed within such a structure as higher-order
objects are indeed points of a certain space.

More precisely—and more generally—suppose ⟨A, R1, . . . , Rn⟩ is an al-
gebraic structure with relations R1, . . . , Rn, all these together modelling
the universe of regions. Suppose P is the set of higher-order objects de-
fined within this structure. The main problem is now to find a topological
space with P as the underlying set of points (similarly as ultrafilters are
taken as points of Stone spaces, and maximally round filters as points of
compact Hausdorff spaces) that naturally models regions (elements of the
domain) and relations Ri. That is, A := ⟨A, R1, . . . , Rn⟩ is captured within
P as U′ = ⟨A′, R′

1, . . . , R′
n⟩ in a similar way as any Boolean algebra B is

captured as the algebra of clopen sets of its Stone space Ult(B). This, in
particular, means that A′ is a family of subsets of P, and that the set P
of points may be given an appropriate topology in which every Ri can be
modeled in such a way that Ri holds among regions iff R′

i holds among
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their point-based counterparts. Usually, subsets of regular open (or reg-
ular closed) sets of P are taken as models of regions (see footnote 10).
If this has been achieved, then we may say we have the solution to the
problem of points, as we have the representation of the original structure
in the structure built from higher-order elements of P that now deserve
the name of points. In this manner, every BA is represented in the space
of ultrafilters, and every De Vries algebra in the space of maximally round
filters. This justifies naming both ultrafilters and maximally round filters
as points. The idea is now to repeat the above steps with a proper algebraic
structure in place of A, and a set of Whitehead points in place of P.

In light of the theorems of Stone’s and De Vries’s, one could naturally
ask could either ultrafilters of maximally round filters serve as Whitehead
points? Why do they fall short? In the case of ultrafilters, the main problem
is hidden in the fact that if they are points, the contact relation collapses
to overlap. Indeed, suppose we have a mapping f that represents regions
of a Boolean algebra in P(Ult(B)), and that f is the standard Stone-like
function, that is, for every region x its points are all these ultrafilters U
that has x as an element. But then, as we observed earlier (see page 71),
there are no points on the boundaries of the regions, so the contact can only
be the overlap, i.e., we cannot model the situations in which objects are
external to each other and touch each other at the same time. Moreover, in
[16] it was shown that if contact and overlap coincide, in complete algebras,
there are no Whitehead points, so in general, ultrafilters cannot serve as
them.

This does not mean that ultrafilters are always bad candidates for build-
ing blocks of spaces of points in which the contact relation is to be modeled.
For example, Peter Roeper [36] starts with them, yet his points are not ul-
trafilters themselves, but equivalence classes of ultrafilters that, in the end,
can be shown to be maximal round filters (see [15]).

As for De Vries points, we have shown above that their class is too large
for the class of Whitehead points, in the sense that Whitehead points may
only form a proper subset of the set of all maximal round filters. We’ll get
back to this problem in Section 7.

For the completeness of the presentation, it should be emphasized that
higher-order constructions are not the only method of explaining points,
and some scholars either defined points in terms of regions (elements of
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the domain) or distinguished a subset of the domain as the collection of
points. The most important examples—in either topological or geometrical
setting—are [12, 13, 14, 21, 22, 35, 39].

6. Grzegorczyk points

This time we start with the contact relation. The difference is irrelevant
from a logical point of view, as with enough axioms the two approaches,
either via contact or via non-tangential inclusion, are definitionally equiva-
lent. However, the proper terminology well-chosen at the outset will equip
us with a user-friendly language. The purpose is to expose the point-free
topology of Grzegorczyk’s from [20], who by the way chose the third way
and based his system on the notion of separation, yet this is again an equiv-
alent approach to those used in this paper.13

Before we begin a proper, mathematical exposition of Grzegorczyk’s
construction and before we draw an analogy between this and Whitehead’s,
let us remind that it was Clarke [4, 5] who was the first scholar to undertake
the task of developing Whitehead’s meretopological ideas. He based his
system on the binary relation of connection, and the definition of a point
different from the original proposal of the English logician. However, as it
was later demonstrated by Biacino and Gerla [2], Clarke’s contact relation
collapses to overlap, and his axioms characterize the atomless complete
Boolean algebras. In consequence, Clarke’s points as defined in [5] are
nothing but ultrafilters. Thus, his approach falls short.

So, let us turn to contact and Boolean contact algebras as a unifying
framework. By a Boolean contact algebra14 we mean a Boolean algebra
extended with a binary relation C of contact that satisfies the following
constraints:

13Strictly speaking, Grzegorczyk did not work with Boolean algebras, but with mere-
ology, which is closely related to the former, see, e.g., [31]. The differences are mainly
hidden in technical intricacies, as mereologies generally do not have zero elements and
are thus semi-lattices.

14For an exposition of Boolean contact algebras see [1, 41].
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0 C/ x (C0)
x ≤ y ∧ x ̸= 0 −→ x C y, (C1)

x C y −→ y C x, (C2)
x ≤ y −→ ∀z ∈ B(z C x −→ z C y) , (C3)

x C y + z −→ x C y ∨ x C z . (C4)

We extend the inventory of relations by introducing non-tangential in-
clusion via the expected definition:

x ≪ y :←→ x C/ −y .

The reader will check easily that so defined ≪ has properties (DV1)–
(DV5). The remaining two De Vries axioms need additional assumptions
about C.

Grzegorczyk’s idea to introduce points was somewhat similar to those of
Whitehead and De Vries.15 Take a region and shrink it till you «squeeze»
a point out of it. However, what distinguishes his definition from the other
two is that he demanded that every set of regions that is a candidate for
a point satisfy the following (geometrical in spirit) property: if x and y are
regions such that each one overlaps all regions in a point candidate, then
x must touch y (see Figure 17). This requirement singles out Grzegorczyk
points among De Vries points, as we will see in a moment.

Formally, a Grzegorczyk representative of a point (G-representative for
short)16 in a Boolean contact algebra is a non-empty set Q of regions such
that:

0 /∈ Q , (r0)
∀u, v ∈ Q(u = v ∨ u ≪ v ∨ v ≪ u) , (r1)

(∀u ∈ Q)(∃v ∈ Q) v ≪ u , (r2)
(∀x, y ∈ R)(∀u ∈ Q)((u � x ∧ u � y) −→ x C y

)
, (r3)

where:
x � y :←→ x · y ̸= 0 .

15Historically, Grzegorczyk precedes De Vries, yet it is virtually impossible that the
two scholars were aware of each other’s work.

16Both the term and its abbreviation adopted from [3].
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It is not hard to see that if we take RO(R) and a point r, then the family
Q := {(r− 1/n, r + 1/n) | n ∈ ω+} is a G-representative. Of course, different
sets may represent the same point, as for example Qe := {(r− 1/n, r + 1/n) |
n ∈ E+}, Qo := {(r − 1/n, r + 1/n) | n ∈ O+} and Q do (E+ and O+

are, respectively, the sets of all positive even integers and of all positive
odd integers). It is easy to see that in the case of r (and any other real
number) there are uncountably many G-representatives. More generally, if
Q is a G-representative in a Boolean contact algebra, and x ∈ Q, then the
set {y ∈ Q | y ≤ x} is also a G-representative. To circumvent the problem
of a unique point identification we declare Grzegorczyk points (G-points)
of a Boolean contact algebra B to be filters generated by G-representatives
(whose set is denoted by Q(B)):

G ∈ Grz(B)←→ (∃Q ∈ Q(B)) G = {y ∈ B | ∃x ∈ Q y ≤ x} .

Figure 17. A representative of a point in the sense of Grzegorczyk:
if two regions overlap all elements of the representative, then they

must be in contact.
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Let x ◦◦F hold iff region x is in contact with every region in a filter
F : (∀y ∈ F ) y C x. Accordingly, x ◦◦/ F iff there is a region in F that is
separated from x. The reader will easily check that if F is round, then:

x ∈ F ←→ −x ◦◦/ F .

Interestingly, every Grzegorczyk point is a maximal round filter. Firstly,
every G-point G is a round filter, for if x ∈ G and Q generates G , then in Q
there is a region y ≤ x. But in Q there is z well-inside y, so z is well-inside
x either. Secondly, in [15] it was proven that a round filter F satisfies the
following condition:

(∀x, y ∈ B) (x ◦◦F ◦◦ y −→ x C y) (✠)

iff the condition (‡) is also true about F . Indeed, if x is separated from y,
applying (✠) in the contraposed form we obtain that either x◦◦/ F or y◦◦/ F ,
and so either −x is an element of F or −y is, as required. The reverse
implication is proven analogously. As the property (‡) uniquely identifies
maximal round filters, so does (✠). At the same time, the condition (r3)
for G-representatives, together with the definition of G-points, entail that
every Grzegorczyk point must satisfy (✠). So Grz(B) ⊆MRF(B). Does
the other inclusion hold? In general, no. If we look back at Figure 12 we
can see a fragment of a point at infinity that, in general, does not have to
be a G-point. To see this, imagine that we color the regions of the point
with two alternating colors, as in Figure 18. After coloring, we choose only
blue stripes, number them with natural numbers, and divide them into two
sets: of stripes tagged with even and of stripes tagged with odd numbers,
respectively. We can now take the suprema of the first set and the second
set to obtain regions that are apart yet overlap every region in the chain
we began with. The chain is included in a maximal round filter E , yet
E cannot be generated by any G-representative. Precisely because any
such a G-representative would have to be covered by the chain, thus failing
to satisfy the condition (r3). We must be careful here as the situation
is subtle, so let us repeat: the maximal round filter E must satisfy (✠),
since every maximal round filter satisfies the condition; it is only that no
G-representative can give rise to E .
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Figure 18. A construction towards showing that not every maximal
round filter is a Grzegorczyk point.

Let us show that G-points satisfy the criteria of the method from
page 84. The first step towards demonstrating this was done by Grze-
gorczyk himself, and more elaborate constructions were delivered in [15],
and [17, 18]. Grzegorczyk demonstrated that his points, together with
the Stone-like mapping, form a topological Hausdorff space, in which his
mereology-based separation structures can be represented. Grzegorczyk
also maintained that the spaces of his points have the following property:
for every point p, there exists an infinite strictly decreasing family of open
sets such that the intersection of the family is {p}. Yet this is not true, as
there are finite structures that are models of Grzegorczyk axioms, which
was proven in the papers by Gruszczyński and Pietruszczak. In those pa-
pers, a class of the so-called concentric topological spaces was singled out,
which are T1 spaces additionally satisfying the condition (R1) displayed be-
low on page 91. Later in [19] it was proven that this class forms a subclass
of the so-called lob-spaces – topological spaces with linearly ordered basis
at every point (see [6]). The subclass contains only regular spaces; that
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is, concentric spaces are those lob-spaces that are T1 and regular. Further,
both authors proved that every Grzegorczyk structure can be represented
as a subalgebra of the regular open algebra of a concentric space of Grze-
gorczyk points. Moreover, it was also proven that there is a one-to-one
correspondence between Grzegorczyk structures that satisfy the countable
chain condition and concentric spaces that satisfy the topological version of
the condition. As a result, abstract Grzegorczyk structures obtained con-
crete representation, and their existence was also established. The latter
follows from the fact that, e.g., the real line with the standard Euclidean
topology is a concentric space.

In the BCA setting, a Grzegorczyk contact algebra may be defined as
a Boolean contact algebra that satisfies two additional second-order Grze-
gorczyk’s axioms. The first of them says that every region has a G-repre-
sentative (and consequently, a G-point):

(∀x ∈ B)(∃Q ∈ Q) x ∈ Q . (G1)

According to the second, G-representatives (and so G-points either) exist
in those locations of space (understood as the unity of the algebra) where
regions touch each other:

x C y −→ (∃Q ∈ Q)(∀u ∈ Q) (u � x ∧ u � y) . (G2)

More precisely, the class of Grzegorczyk contact algebras is determined by
axioms (C0)–(C3), (G1), (G2), as (C4) is their consequence.

It is provable that the set of all values of the Stone-like mapping G : B →
P(Grz(B)) such that G (x) := {G ∈ Grz(B) | x ∈ G } is a basis, and thus
gives rise to a topological space ⟨Grz(B), O⟩. As we wrote above, the key
notion to understanding this space is the concept of a concentric space,
which is formally defined as a T1 space in which every point p has a local
basis Bp of regular open sets such that:

(∀U, V ∈ Bp) (U = V ∨ Cl U ⊆ V ∨ Cl V ⊆ U) . (R1)

The reader will notice that the condition is a point-based counterpart of
(r1) from page 87. Every concentric space is a regular space, yet generally,
the converse is not true. For example, the uncountable product of the
discrete space {0, 1} is regular but not concentric [37].
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If B is a Grzegorczyk contact algebra, then the space Grz(B) must be
a concentric space. Given any G-point G we know that it has been gen-
erated by some G-representative Q, and thusly, the family BG := {G (x) |
x ∈ Q} is a local basis at the point G that satisfies the condition (R1).
The fact that Grz(B) is T1 is routinely verified, since if G1 ̸= G2, then
G1 ⊈ G2 and G2 ⊈ G1 (for G-points are maximal objects). Therefore there
is a region x in G1 but not in G2, so G1(x) is an open set around the point
G1 but not around G2.

On the other hand, given a concentric space X, its algebra RO(X) is
a (complete) Grzegorczyk contact algebra.17

In [15] it was shown that every Grzegorczyk contact algebra B embeds
into a Grzegorczyk contact algebra of a concentric topological space, and
the embedding is an isomorphism in the case of completeness of B.

GCA B Grz(B) Conc

RO(Grz(B)) GCAc

∋

G

∈

∈

Figure 19. Let GCA be the class of Grzegorczyk contact algebras, and
Conc the class of concentric topological spaces. Any Grzegorczyk
algebra B embeds densely into the algebra of regular open sets

of the concentric space for B.

The path from the concentric topological spaces to Grzegorczyk algebras
is a bit more complicated, and it was only proven for Grzegorczyk contact
algebras and concentric spaces that satisfy, respectively, algebraical and
topological versions of the countable chain condition, which has not been
circumvented so far. By an antichain of a Boolean algebra we mean, stan-
dardly, a subset of its regions that are pairwise incompatible. In the case of
topological spaces, an antichain is a family of open sets whose intersections
are pairwise empty. The countable chain condition is satisfied either by an
algebra or a topological space if any antichain is at most countable.

17The proof of this fact can be found in [15] and [18].
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GCAc B Grz(B) Conc

RO(Grz(B)) GCAc

∋

G G −1

∈

∈

Figure 20. Any complete Grzegorczyk contact algebra B
is indistinguishable from the Grzegorczyk algebra of regular open sets

of the concentric space for B.

Firstly, if the condition holds for a Grzegorczyk algebra B, then its
space Grz(B) satisfies the topological version of the condition, and the
algebraical version transfers to RO(Grz(B)). The first dependence stems
from the fact that if every antichain of regions is at most countable and
the family of all sets of the form G (x) is a basis for Grz(B), then the space
must also satisfy the condition. If it did not, for an uncountable antichain
of its open sets we would find an uncountable antichain of sets of the form
G (x), and since:

x ⊥ y ←→ G (x) ∩ G (y) = ∅

the pre-images of G (x)s would form an uncountable chain of regions in B.
Secondly, it is evident that if a topological space satisfies the countable

chain condition, then its algebra of regular open sets must also satisfy it.
In light of these, it is easily seen that the situations from figures 19

and 20 transfer immediately to those structures that satisfy the condition.
Moreover, we can extend the representation to the one from Figure 21. For
complete Grzegorczyk algebras, we have then a one-to-one correspondence
between these that satisfy ccc, and concentric structures that have ccc.

To conclude, the results presented let us affirmatively respond to the
question: are Grzegorczyk points really points?18 As it turns out, thanks
to the results for G-points, we can positively answer the main problem of
this paper: are there any spaces of Whitehead points (in the sense of the
method from page 5)?

18Technical details of all constructions can be found in [15] and [17, 18].
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Concccc X RO(X) GCAc
ccc

Grz(RO(X)) Concccc

∋

h h−1

∈

∈

Figure 21. Any concentric space X satisfying the countable chain
condition is homeomorphic to the concentric space of the complete

Grzegorczyk algebra of regular open sets of X that satisfies
the condition either.

7. Spaces of Whitehead points

In [3] we find the proof that, under some reasonable constraints, the classes
of Grzegorczyk points and Whitehead points for a certain connection struc-
tures (mereological structures with the contact relation) coincide. In this
section, we rephrase the results of Biacino and Gerla in the framework of
contact algebras in order to apply their result (together with the results
from earlier sections) to the problem of representation theorem for White-
head points.

As we saw, Grzegorczyk points may be defined as filters, but they can
also be characterized as quotients with respect to the covering relation from
section 2. In the case of G-representatives we have that if Q1 covers Q2,
then Q2 covers Q1. This is a consequence of two facts: (a) if Q1 does not
cover Q2, then there are regions x ∈ Q1 and y ∈ Q2 that are separated
from each other, and (b) if Q1 covers Q2, then for all x ∈ Q1 and y ∈ Q2,
x and y are compatible.

Since covering is also transitive and reflexive, it must be an equivalence
relation (in the family of G-representatives, but not generally in the family
of all abstractive sets), and thus we can say that G-representatives Q1 and
Q2 represent the same location (in symbols: Q1 ∼ Q2) if and only if Q1
covers Q2 (and Q2 covers Q1).

The relation ∼ may be recovered from the set of G-points via the fol-
lowing equivalence:

Q1 ∼ Q2 ←→ (∃G ∈ Grz) Q1 ∪Q2 ⊆ G .



Mathematical Methods in Region-Based Theories of Space 95

The family of all equivalence classes of the relation ∼ in the set of
Grzegorczyk representatives:

Eq := Q/∼

may now be treated as the set of points, as there is a bijective correspon-
dence between elements of Eq and G-points given by function f : Eq →
Grz such that f([Q]) := GQ, where GQ is the G-point generated by Q.
Thus, Grzegorczyk points can be characterized by the Whiteheadian cov-
ering relation.

Let us observe that Whitehead’s abstractive sets are sets of regions that
satisfy Grzegorczyk conditions (r0), (r1), plus non-minimality constraint:

¬(∃x ∈ B)(∀y ∈ A) x ≤ y . (A)

Thus, it is immediate that if the Boolean contact algebra in focus is atom-
less, then its Grzegorczyk representatives must be abstractive sets. A less
obvious conclusion is that in every atomless contact algebra, every G-re-
presentative must be a Whitehead representative of a point either. To see
this, let us couch—after Biacino and Gerla—a mathematically satisfactory
definition of a Whitehead representative and a Whitehead point.

Unlike the covering relation on Grzegorczyk representatives, covering
on abstractive sets does not have to be an equivalence relation since it is
not generally symmetric. However, it is reflexive and transitive, so it gives
rise to the following equivalence relation19:

A1 ∼ A2 :←→ A1 ⪰ A2 ∧A2 ⪰ A1 .

In the case A1 ∼ A2, we say that the objects A1 and A2 are similar. The
intended meaning of similarity is a representation of the same geometrical
figure in space. Of course, unlike G-representatives, abstractive sets do not
have to represent the same precise location, and the idea is to identify those
that do. As ∼ is an equivalence, we can define—in Whitehead’s spirit—
geometrical objects as equivalence classes of abstractive sets with respect
to similarity, i.e., as elements of the family A/∼. This family equipped
with the following binary relation:

19Recall that A1 ⪰ A2 means A1 covers A2.
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[A1] ⊵ [A2] :←→ A1 ⪰ A2

is a partially ordered set (i.e., ⊵ is reflexive, anti-symmetrical, and transi-
tive).

We can now define Whitehead points and Whitehead representatives.
[A] ∈ A/∼ is a Whitehead point (W-point) iff [A] is maximal with respect
to ⊵: for every [A′] ∈ A/∼, if [A] ⊵ [A′], then [A] = [A′]. A ∈ A is a White-
head representative of a point (a W-representative) iff [A] is a Whitehead
point. The set of all Whitehead points and of all Whitehead representatives
will be denoted by, respectively, ‘W’ and ‘QW ’.

Observe that we can also characterize as W-representatives those ab-
stractive sets that satisfy the following equivalence:

A ∈ QW ←→ (∀X ∈ A) (A ⪰ X −→ X ⪰ A) .

As it was demonstrated in [16], the notion of the Whitehead point is con-
sistent, i.e., there are contact algebras with Whitehead points. However,
we can still ask: can we prove that there are topological spaces based on
Whitehead points obtained in the way described on page 84?, and can we
find any form of representation theorems for such spaces? Both questions
may be answered affirmatively in an indirect way using the result of Bia-
cino and Gerla: under additional assumptions, the set of Whitehead points
of a given contact algebra coincides with the set of Grzegorczyk points.

To prove that every G-point is a W-point it is enough to show that
every G-representative is a W-representative. This part is relatively easy,
and the result from [3] can actually be strengthened to the following (for
details, see [16])

Theorem 7.1. If B is a Boolean contact algebra that satisfies (DV7) then:
B is atomless iff in B every G-representative is a W-representative.

Proving that every W-representative is a G-representative is a bit harder,
and the original demonstration of [3] calls for a small modification. In the
class of all abstractive sets of a given Boolean algebra B we distinguish
those that countable abstractive sets can represent. By an ω-abstractive
set, we understand an abstractive set A for which there is a countable
abstractive set A′ such that A both covers A′ and is covered by A′. Ac-
cordingly, W ω-representatives will be those Whitehead representatives that
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are ω-abstractive sets. Let Qω
W be the set of all W ω-representatives of a

given Boolean contact algebra. We have:

Theorem 7.2. If B is a Boolean contact algebra that satisfies (DV6) and:

x /∈ {0, 1} −→ x C−x , (C6)

then every W ω-representative is a G-representative.

The small modification we mentioned is the inclusion of (C6) in the
premises of the theorem. Here, (C6) is a region-based version of connect-
edness, i.e., it says that every non-zero and non-unity region touches its
Boolean complement. For a more detailed analysis of this, we again refer
the reader to [16].

In light of the above and the earlier results, we may conclude that the set
Qω

G of those Grzegorczyk representatives that countable sets can faithfully
represent, we have the equality: Qω

G = Qω
W , and in consequence, Grzω =

Wω, where the former set is the set of Grzegorczyk points obtained from
the elements of Qω

G and the latter the set of Whitehead points obtained
from the elements of Qω

W .
We thus have reached a point at which we can formulate the following

theorem:

Theorem 7.3. Let B be an atomless Boolean contact algebra that satisfies
the interpolation axiom (DV6) and the connectedness axiom (C6). Suppose
we introduce both definitions of points—by Grzegorczyk and by Whitehead—
and extend the axioms with Grzegorczyk postulates (G1) and (G2). Suppose
Grzω ̸= ∅. Let ⟨Grz, O⟩ be the concentric topological space for B. Then its
subspace ⟨Grzω, Oω⟩ (where Oω := {Grzω ∩ V | V ∈ O}) is a topological
space whose points are W-points.

We can also conclude that there are spaces in which both sets of points
coincide on the whole space, not only its subspace. To this end, observe
that in the case of abstractive sets covering is anything but a form of
cofinality for ≥-relation: an abstractive set A covers an abstractive set B
iff B is cofinal with A. Putting the dual ≥ of part of relation in focus, and
assuming Axiom of Choice, every chain C in any Boolean contact algebra
has a cofinal well-ordered subchain C ′ with respect to ≥, where we refer
to the dual notion of the well-ordered set by requiring the existence of the
maximal element for ≥ in every non-empty subset of C ′. On the other
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hand, the countable chain condition entails that every infinite well-ordered
set of regions must be countable. Therefore:

Theorem 7.4. Let B be an atomless Boolean contact algebra that satis-
fies the interpolation axiom (DV6), the connectedness axiom (C6), and
the countable chain condition. Suppose we introduce both definitions of
points—by Grzegorczyk and by Whitehead—and we extend the axioms with
Grzegorczyk postulates (G1) and (G2). The concentric topological space
⟨Grz, O⟩ for B is a topological space in which Grz = Grzω, so it is a space
whose points are W-points.

Thanks to the above theorem, we can see that Grzegorczyk and White-
head points coincide in a large subclass of regular spaces: concentric spaces
that satisfy countable chain condition.20

Since the algebra RO(Rn) of regular open subsets of the n-dimensional
Euclidean space has all the properties from the premises of the theorem
above, we can conclude that:

Corollary 7.5. There are spaces of Whitehead points satisfying the re-
quirements of the method from page 84.

Let us conclude this section with a strict justification of the difference
between De Vries’s and Whitehead points mentioned on page 80. We know
there are structures in which Whitehead points are exactly Grzegorczyk
points. Yet on page 6 we have demonstrated how to construct a maximally
round filter that is not a G-point. This construction can be carried out in
R2, which is a space that satisfies all premises of Theorem 7.4. Thus,
in RO(R2) there is a De Vries point that is not a Whitehead point.

8. Summary

From the intuitions about the perspective space, we have come a long way
through the topological representation theorems for Boolean algebras and
De Vries algebras, Grzegorczyk contact algebras, to spaces of Whitehead
points. Because there are spaces of Grzegorczyk points and Grzegorczyk

20The result concerning the relationship between Grzegorczyk and Whitehead points
can be generalized by eliminating the countability assumption. This, however, calls for
a stronger, second-order version of (DV6). Details, again, can be found in [16].
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contact algebras whose G-points coincide with Whitehead points, we con-
cluded that there are topological spaces constructed in the Stone-like man-
ner whose fundamental objects are the English logician’s points.

One might say that this is a roundabout way to show that there are
topological spaces built out of Whitehead points. However, to our knowl-
edge, no better way has been found so far. The earlier analyses only pre-
sented the way to points via extensive abstraction or compared them to
other similar constructions. Yet, none of them pointed out that there are
indeed topological spaces of Whitehead points obtained via methods of
representation theorems.

The natural questions at this point are: can we generalize the result?,
can we drop the reference to Grzegorczyk points and build any representa-
tion (or, even better, duality) for Whitehead points directly? With positive
answers to these, we may try extending the scrutiny of both Grzegorczyk
and Whitehead constructions to algebraic structures weaker than Boolean
contact algebras, e.g., (extended) distributive contact lattices [11, 23], or
Stonian p-ortholattices [49], to name few.

These, in our opinion, are problems concerning the classical Whitehead
construction that has been neglected for too long. The path to under-
standing what Whitehead points are leads through the realms of logic and
mathematics.
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