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Abstract

We study the variety generated by the three-element equivalential algebra with
conjunction on the dense elements. We prove the representation theorem which
let us construct the free algebras in this variety.
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1. Introduction

According to [6], there are only finitely many polynomial clones on a finite
algebra which generates a congruence permutable Fregean variety. As we
will show in the paper, if a three-element algebra A generates a congru-
ence permutable Fregean variety, then the universe of A with the natural
order is a chain. Moreover, also the lattice of congruences on A is a three-
element chain. It is known that congruence permutable Fregean varieties
are congruence modular, so we can consider in this case the commutator
operation. By [6, Corollary 2.8], due to the behavior of the commutator
operation on a three-element algebra, we can distinguish four polynomi-
ally nonequivalent algebras, that generate congruence permutable Fregean
varieties.
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Two of them are well known: the three-element equivalential algebra
and the three-element Brouwerian semilattice. The equivalential algebras
are solvable, so they are of type 2 ([6, p. 606]) in the sense of Tame Con-
gruence Theory of Hobby and McKenzie [4]. However, the Brouwerian
semilattices are congruence distributive and so they are of type 3. Equiv-
alential algebras and Brouwerian semilattices have already been carefully
studied, both when it comes to the construction of the n-generated free
algebras, as well as the cardinality of these algebras for small n and for
some subvarieties, see [8, 19, 14, 15] for the equivalential algebras and [9]
for the Brouwerian semilattices.

In the other two cases we are dealing with a mixed type. In the first
case, we have type 3 at the top of congruence lattice and type 2 at its
bottom, see Figure 1. An example of algebra, which meets these conditions
is the three-element equivalential algebra with conjunction on the regular
elements. The variety generated by this algebra was investigated in [11],
where its properties, the representation theorem, the construction of the
free algebra and the free spectrum were given.

The aim of this paper is to study the variety generated by the three-
element algebra, in which the commutator operation behaves in the op-
posite way: type 2 is at the top of congruence lattice and type 3 at its
bottom. Such structure is the subreduct of the three-element Heyting alge-
bra, with the equivalence operation and the second binary operation which
is conjunction on the dense elements.

Both the dense elements as well as the regular elements play an impor-
tant role in the study of the relation between classical and intuitionistic
logic. They appear indirectly in the Glivenko theorem according to which
a formula φ is a tautology of classical propositional calculus iff its dou-
ble negation (i.e. the regularization of φ) is a tautology of intuitionistic
propositional calculus. An algebraic version of this theorem refers directly
to dense elements: we divide a Heyting algebra by the filter of all dense
elements obtaining a Boolean algebra [12, p. 132].

2. Preliminary

Let A be an algebra. We say that µ ∈ ConA is completely meet-
irreducible if µ ̸= A2 and for any family {µi : i ∈ I} ⊆ ConA such
that µ =

⋂
i∈I µi, we have µ = µi for some i ∈ I. If µ is completely meet-
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irreducible, then there exists the unique cover of µ in ConA, denoted by µ+.
We will denote by Cm(A) the set of all completely meet-irreducible con-
gruences on A. Similarly, we can define a completely join-irreducible
congruence ν and the unique subcover of ν in ConA, denoted by ν−. Let
Θ(a, b) denote the congruence generated by (a, b).

Now, we will recall the most important facts related to the concept of
the commutator. At the beginning we need the following definition:

Definition 2.1 ([10, p. 252]). Let α, β, η be congruences of an algebra
A. We say that α centralizes β modulo η, written: C(α, β; η), iff for all
n ≥ 1, and for every: t ∈ Clon+1A, (a, b) ∈ α and (c1, d1), . . . , (cn, dn) ∈ β
we have:

t(a, c1, . . . , cn) ≡η t(a, d1, . . . , dn) iff t(b, c1, . . . , cn) ≡η t(b, d1, . . . , dn).

Definition 2.2 ([10, p. 252]). For congruences α and β of A ∈ V, where
V is a congruence modular variety, we define their commutator, denoted
[α, β], to be the smallest congruence η of A for which α centralizes β modulo
η, i. e., η =

∧
{ϕ : C(α, β;ϕ)}.

Definition 2.3 ([2, p. 35, 47]). Let A ∈ V, where V is a congruence
modular variety, α, β ∈ ConA and α ≤ β. Then:

1. β is called Abelian over α if [β, β] ≤ α,

2. β is called Abelian if [β, β] = 0A,

3. A is called Abelian if [1A, 1A] = 0A.

We say that an algebra A satisfies the condition (C1) if α ∧ [β, β] =
[α ∧ β, β] for all α, β ∈ ConA.

Remark 2.4 ([5, p. 49]). In congruence modular varieties the condition
(C1) gives [α, β] = (α∧ [β, β])∨ (β ∧ [α, α]), for α, β ∈ ConA, so the com-
mutator operation on congruences of A is uniquely determined by the di-
agonal, i. e., by elements of the form [α, α].

If A ∈ V and V is a congruence modular variety, we can define the
following notion:

Definition 2.5 ([10, p. 252]). The centralizer of β modulo α, denoted
(α : β), is the largest congruence γ of A such that γ centralizes β modulo
α, i. e., γ =

∨
{ϕ : C(ϕ, β;α)}.
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Now, we give basic information about Fregean varieties.

Definition 2.6 ([6, p. 597]). An algebra A with a distinguished constant
term 1 is called Fregean if A is:

1. 1-regular, i. e., 1/α = 1/β implies α = β for all α, β ∈ ConA,

2. congruence orderable, i. e., ΘA(1, a) = ΘA(1, b) implies a = b for
all a, b ∈ A.

A variety V is said to be Fregean if all its algebras are Fregean. Natural
examples of Fregean varieties are: equivalential algebras, Boolean algebras,
Heyting algebras, Brouwerian semillatices or Hilbert algebras. Fregean
varieties are closely related with the Fregean logics, see [1].

Congruence orderability allows us to introduce a natural partial order
on the universe of A in the following way: a ≤ b iff ΘA(1, b) ⊆ ΘA(1, a).
Clearly, 1 is the greatest element in this order. From 1-regularity it follows
that the Fregean varieties are congruence modular, see [3].

Next, we recall an important theorem, which characterizes subdirectly
irreducible algebras in Fregean varieties.

Proposition 2.7 ([16, Proposition 3.1], [6, Lemma 2.1]). Let A be an
algebra from a Fregean variety V. Then A is subdireclty irreducible iff
there is the largest non-unit element ∗ in A. Moreover, the monolith µ of
A has the form 1/µ = {∗, 1} and all other cosets with respects to µ are
one-element.

The Fregean varieties meet the condition (C1). Moreover, they satisfy
the stronger condition (SC1):

Definition 2.8 ([6, p. 602]). If µ is the monolith of a subdirectly irre-
ducible algebra A from a Fregean variety then the centralizer (0 : µ) does
not exceed µ.

Definition 2.9. An equivalential algebra is an algebra (A,↔, 1) of type
(2, 0) that is a subreduct of a Heyting algebra with the binary operation
↔ given by x↔ y := (x→ y) ∧ (y → x).

In this paper, we adopt the convention of associating to the left and
ignoring (or replacing with “·”) the symbol of equivalence operation. In 1975
J. K. Kabziński and A. Wroński proved that the class E of all equivalential
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algebras is equationally definable by identities: xxy = y, xyzz = (xz)(yz),
(xy)(xzz)(xzz) = xy, and so it forms a variety [8].

We know from [6, p. 598] that E is congruence permutable. Moreover,
the following theorem is true:

Theorem 2.10 ([6, Theorem 3.8]). Let V be a congruence permutable
Fregean variety. Then there exists a binary term ↔ such that for every
A ∈ V:

1. (A,↔, 1) is an equivalential algebra;

2. ↔ is a principal congruence term of A, i. e., (a, b) ∈ α iff (1, a↔ b) ∈
α for every α ∈ ConA.

If V is a congruence permutable Fregean variety and A ∈ V, then we
will denote an equivalential reduct of A by Ae.

3. The clones of polynomials of a three-element
algebra, which generates a congruence permutable
Fregean variety

It is known that there exist only two polynomially nonequivalent alge-
bras defined on a two-element set and generating a congruence permutable
Fregean variety [6, p. 640]. We examine an analogous situation, but for a
three-element set. The first question concerns the number of such polyno-
mially nonequivalent algebras. By Theorem 2.10, for every algebra A from
a congruence permutable Fregean variety there is a binary term ↔ such
as Ae is an equivalential algebra. In order to answer our question we first
need to consider a three-element algebra A with a universe {1, a, b}, with
the equivalence operation ↔ and a constant term 1, which is the greatest
element in A in the natural order.

Proposition 3.1. Let A generate a congruence permutable Fregean vari-
ety with a constant term 1 and let |A| = 3. Then:

1. A with the natural order is a chain,

2. (ConA,∨,∧) with the order ⊆ is a three-element chain

Proof: (1) Let A = {1, a, b}. Without loss of generality we can assume
that a ↔ b = a, since otherwise (i.e. a ↔ b = b) the situation would
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be analogous. From Theorem 2.10 we have Θ(1, a ↔ b) = Θ(a, b). Thus:
Θ(1, a) = Θ(1, a↔ b) = Θ(a, b). As Θ(1, b) ⊆ Θ(1, a), so from a congruence
orderability it follows that a ≤ b and consequently a < b < 1.

(2) Similarly, from a congruence orderability and inequalities a < b < 1
we get: 0A = Θ(1, 1) ⊊ Θ(1, b) ⊊ Θ(1, a) = 1A. Thus: 0A < Θ(1, b) < 1A.
This completes the proof because in ConA there are only principal con-
gruences.

Since {1, a, b} with the natural order forms a chain, thus we adopt
the convention that the smallest element in a three-element chain will be
denoted by 0, and the middle element by ∗. We conclude from Proposition
2.7 that an algebra A, which fulfills the assumptions of Proposition 3.1,
is a subdirectly irreducible with the monolith Θ(1, ∗). Note also, that if
a three-element algebra A comes from a congruence permutable Fregean
variety, then Θ(x, y) = Θe(x, y), for x, y ∈ A.

By [6, Corollary 2.8], the clone of polynomials of a finite algebra from
a congruence permutable Fregean variety is uniquely determined by its
congruence lattice expanded by the commutator operation, i. e., by the
structure Concom(A) := (ConA;∧,∨, [·, ·]). Thus, the number of clones of
polynomials of A depends on the behaviour of the commutator operation
on a three-element lattice of congruences. There are four such possibilities,
shown in the figure below.
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The number 2 used in the figure means that a congruence α above
this number is Abelian over α−, where α− denotes the unique subcover
of α, i. e., [α, α] = α−. On the other hand, the number 3 means that
a congruence α above this number fullfils: [α, α] = α. Note that it follows
from the condition (SC1) that the equality [1A, 1A] = 0A is not possible,
because it would lead to a contradiction, i. e., (0A : µA) = 1A.

An algebra, in which the commutator behaves as in the first case is
the three-element equivalential algebra, whereas an algebra, in which the
commutator behaves as in the fourth case is the three-element Brouwerian
semilattice. An example corresponding to the second case is a three-element
equivalential algebra with conjunction on the regular elements, described
in [11]. In this article we will give an example of an algebra, in which the
commutator behaves as in the third case.

4. Equivalential algebras with conjunction on
the dense elements

In Heyting algebras we can consider both the dense elements and the reg-
ular elements. An element x is called: regular if (x→ 0) → 0 = x, dense
if (x → 0) → 0 = 1. The Glivenko theorem mentioned earlier, explains
their role in studying of the reducts of the intuitionistic logics. To defined
them in Heyting algebras we use the constant 0. In equivalential algebras
we can define the regular and dense elements without using this constant.
In this situation we say that an element x ∈ A is regular if xyy = x for all
y ∈ A, and it is dense if there is a finite subset {y1, y2, . . . , yn} ⊆ A such
that xy1y1y2y2 . . . ynyn = 1. If the equivalential algebra A is the reduct of
the Heyting algebra, then both definitions coincide.

In Heyting algebras we can define an operation of the conjuction on
the dense elements. Let us consider a subreduct of the Heyting algebra
with the constant 1 and with two binary operation. The first is the equiva-
lence operation, providing the congruence permutability, while the second
operation is the conjuction on the dense elements. We will also limit our
considerations to the three-element subreduct of the Heyting algebra. From
Proposition 3.1 we know that the universe of this algebra with the natural
order forms a chain. Finally, we get the following definition.

Definition 4.1. An equivalential algebra with conjunction on the
dense elements is an algebra D := ({0, ∗, 1}, ·, d, 1) of type (2, 2, 0), which
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is the reduct of the three-element Heyting algebra H = ({0, ∗, 1},∧,∨,→
, 0, 1) with an order: 0 < ∗ < 1, the constant 1, the equivalence operation ·
such that x · y := (x→ y)∧ (y → x), and an additional binary operation d
such that d(x, y) := x00x ∧ y00y.

Note that Ae is an equivalential algebra and d is a binary commutative
operation presented in the table below (on the right):

· 1 ∗ 0
1 1 ∗ 0
∗ ∗ 1 0
0 0 0 1

d 1 ∗ 0
1 1 ∗ 1
∗ ∗ ∗ ∗
0 1 ∗ 1

We denote by V(D) the variety generated by D. It is easy to see, that
D is a subdirectly irreducible Fregean algebra with the monolith denoted
by µD. Moreover, ConD = {0D, µD, 1D}, where 0D < µD < 1D.

Remark 4.2. D has two nontrivial subalgebras:

2 := ({1, 0}, ·, d, 1), where d ≡ 1,

2∧ := ({1, ∗}, ·, d, 1), where d(x, y) := x ∧ y.

Thus, the algebra 2 is a Boolean group and is abelian, while the algebra
2∧ is a Boolean algebra without zero [18] and is not abelian. Note that
D/µD

∼= 2, and, consequently, A ∈ HS(D) iff A ∼= 2 or A ∼= 2∧ or A ∼= D
for non-trivial A ∈ V(D).

Now, applying [6, Theorem 2.10] we get immediately:

Proposition 4.3. V(D) is a Fregean variety.

Next, we look at the commutator operation in ConD.

Proposition 4.4.

1. [µD, µD] = µD,

2. [1D, 1D] = µD,

3. (0D : µD) = 0D,

4. (µD : 1D) = 1D.
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Proof: (1) From the definition of the commutator we get:

1 = d(1, 1) ≡[µD,µD] d(1, ∗) = ∗ iff

∗ = d(∗, 1) ≡[µD,µD] d(∗, ∗) = ∗,

so (1, ∗) ∈ [µD, µD], thus [µD, µD] = µD.
(2) Since D/µD

∼= 2, we get immediately from the general property of
the commutator operation [2]:

µD/µD = [1D/µD, 1D/µD] = ([1D, 1D] ∨ µD)/µD.

Thus [1D, 1D] ∨ µD = µD, and consequently [1D, 1D] ⊆ µD. From the
equality [µD, µD] = µD we get [1D, 1D] ⊆ µD ⊆ [µD, µD], and therefore
[1D, 1D] = µD.

(3), (4) From Definition 2.3 and (1) and (2) we get that 1D is Abelian
over µD, and µD is not Abelian in D. Thus, from [5, Lemma 21] we obtain
the assertion.

From the above proposition we get the following result:

Corollary 4.5. The algebra D is polynomially equivalent neither to the
three-element equivalential algebra nor to the three-element Brouwerian
semillatice.

Proposition 4.6. There are only three (up to isomorphism) nontrivial
subdirectly irreducible algebras in V(D): D,2,2∧.

Proof: From Remark 4.2 we know that up to isomorphism the only non-
trivial subdirectly irreducible algebras in HS(D) are: D,2,2∧. Among
them only 2 has an abelian monolith. Suppose that B := {B, ·, dB , 1} is
subdirectly irreducible in V(D). It follows from [2, Theorem 10.12] that
there exists a subdirectly irreducible algebra A ∈ HS(D) such that either
B ∼= A or B and A have abelian monoliths and B/(0B : µB) ∼= A/(0A :
µA). Thus B ∈ {D,2,2∧} (up to isomorphism) or B has an abelian mono-
lith and B/(0B : µB) ∼= 2/(02 : µ2). Assume that the second possibility
holds. From (SC1) we get (0B : µB) = µB. Thus B/µB

∼= 2/(02 : µ2).
Since 2/(02 : µ2) = 2/µ2 is a trivial algebra, it follows from Proposition 2.7
that B with the natural order is the two-element chain, and so B = {1, 0}.
Using identities dB(x, 1) ≈ dB(x, x) ≈ dB(1, x) and dB(1, 1) ≈ 1, true in
V(D), we get dB(1, 0) = dB(0, 1) = dB(0, 0). Suppose that dB(1, 0) = 0,
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then dB(x, y) = x∧y, contrary to the fact that B has an abelian monolith.
Thus dB(1, 0) = 1, and so dB ≡ 1. In consequence B ∼= 2, which completes
the proof.

Remark 4.7. It follows from Proposition 4.6 that all subdirectly irreducible
algebras in V(D) belong to S(D). Thus V(D) = SP (D). In consequence,
a quasivariety generated by D turns out to be a variety.

5. Frames for the algebras from V(D)

Let A ∈ V(D). Recall, that we denote by Cm(A) the set of all completely
meet-irreducible congruences on A. In this section we describe an addi-
tional structure (frame) on Cm(A). This structure is similar to the frames
in the equivalential algebras with conjunction on the regular elements de-
scribed in [11].

It follows from Proposition 4.6 that µ ∈ Cm(A) iff A/µ ∼= k, for k ∈
{D,2,2∧}. We use the following notation:

L := {µ ∈ Cm(A) : A/µ ∼= 2},

L := {µ ∈ Cm(A) : A/µ ∼= D},

P := {µ ∈ Cm(A) : A/µ ∼= 2∧},

L := L ∪ L.

Proposition 5.1. Let A ∈ V(D) and µ ∈ Cm(A). If A/µ ∼= D, then
A/µ+ ∼= 2.

Proof: Let f : A/µ → 2 be the function given by f(1/µ) = f(∗/µ) = 1
and f(0/µ) = 0. Therefore f is a surjective homomorphism and ker f =
µ+/µ. Thus (A/µ)/(µ+/µ) ∼= 2, and consequently A/µ+ ∼= 2.

Corollary 5.2. Let A ∈ V(D) and µ ∈ Cm(A). Then µ ∈ P ∪ L iff
µ ≺ 1A (i. e., µ+ = 1A) and µ ∈ L iff µ+ ∈ L.

In consequence, the length of the longest chain in Cm(A) equals two.
Let A ∈ V(R) and φ,ψ ∈ Cm(A). We introduce a relation on Cm(A)

as follows (see [5, p. 51]):

φ ∼ ψ iff the intervals I[φ,φ+] and I[ψ,ψ+] are projective.

It is easy to see, that the relation ∼ is an equivalence relation on Cm(A).
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From [17, Lemma 4.2, Corollary 3.7] it follows that the definition of the
relation ∼ is equivalent to the following definition: φ ∼ ψ iff φ+ = ψ+ and
φ • ψ ∈ Cm(A), where φ • ψ = (φ÷ ψ)′ ∩ φ+.

Definition 5.3. Let A ∈ V(D). The structure Cm(A) := (Cm(A),≤,∼)
is called a frame of A, where ≤ is the inclusion relation.

First, we show that the relation ∼ on P ∪ L is an identity.

Proposition 5.4. Let A ∈ V(D) and µ ∈ P ∪ L. Then |µ/∼| = 1.

Proof: Let µ ∈ P . Then µ+ = 1A. Since A/µ is not Abelian, so from
[2, Proposition 3.7] we get that 1A is not Abelian over µ. Thus µ+ is not
Abelian over µ. Let now µ ∈ L. Then A/µ ∼= D. Since µD is not Abelian,
thus µ+/µ, the monolith of A/µ, is also not Abelian. In both cases, from
[5, Lemma 21] we have µ/∼ = {µ}.

Theorem 5.5. Let A ∈ V(D) and µ ∈ L. Then:
1) µ/∼ = {ν ∈ L : ν+ = 1A} = L,
2) (µ/∼ ∪ {1A}, •) forms a Boolean group, where µ1 • µ2 := (µ1 ÷ µ2)

′ for
µ1, µ2 ∈ µ/∼.

Proof: (1) From [5, Lemma 21] we know that µ/∼ ⊆ {ν ∈ L : ν+ = 1A}.
We need to prove the reverse inclusion. Let φ ∈ {ν ∈ L : ν+ = 1A} and φ ̸=
µ. First we show that µ•φ is a congruence on A. Since Cm(A) ⊆ Cm(Ae),
see [7, Lemma 4.1], we have µ, φ ∈ Cm(Ae). Thus, from [14, Proposition 3]
we get that µ•φ ∈ ConAe. Next, we show that the relation µ•φ is compat-
ible with the operation d. Let (a, b), (e, f) ∈ µ•φ. Since the operation d ≡ 1
on A/µ∪A/φ, we get d(a, e) ·d(b, f) ∈ 1/µ and d(a, e) ·d(b, f) ∈ 1/φ. Thus
d(a, e)·d(b, f) ∈ 1/µ∧φ, and, consequently, (d(a, e), d(b, f)) ∈ µ∧φ ⊆ µ•φ.
Therefore µ •φ is a congruence. Since µ+ = φ+, from [17, Corollay 3.7] we
get µ ∼ φ. Thus φ ∈ µ/∼, and so {ν ∈ L : ν+ = 1A} ⊆ µ/∼.

The assertion (2) follows from [17, Theorem 3.6].

Summarizing, the equivalence classes of the relation ∼ on Cm(A) take
the following form:

1. L ∈ Cm(A)/∼,

2. µ/∼ = {µ} for all µ ∈ L ∪ P .
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6. Representation theorem

A maximal proper subalgebra of the Boolean group is called a hyper-
plane. We use this word, because a Boolean group can be interpreted as
a vector space over the field Z2. We will write Z ↑:= {ν ∈ Cm(A) : ν ≥
µ for some µ ∈ Z} and Z ↓:= {ν ∈ Cm(A) : ν ≤ µ for some µ ∈ Z} for
Z ⊆ Cm(A). Let A ∈ V(D). To get the representation theorem, we need
to define a family of subsets on the set Cm(A) called the hereditary sets.
This idea came from Słomczyńska, see [14]. The general definition [17,
Definition 4.5] works for every algebra A from a Fregean variety. It is easy
to see that in our case this definition takes the following form:

Definition 6.1. Let A ∈ V(D) and Z ⊆ Cm(A). A set Z is hereditary
if:

1. Z = Z ↑,

2. L ⊆ Z or ((L ∩ Z) ∪ {1A}, •) is a hyperplane in (L ∪ {1A}, •).
We denote by H(A) the set of all hereditary subsets of Cm(A).

We define a map M as follows:

M : A ∋ a→M(a) := {µ ∈ Cm(A) : a ∈ 1/µ},

for all A ∈ V(D).
Now, we formulate the representation theorem.

Theorem 6.2. Let A ∈ V(D) and let A be finite. Then the map
M : A ∋ a → M(a) := {µ ∈ Cm(A) : a ∈ 1/µ} is the isomorphism
between A and (H(A),↔, d,1), where

Z ↔ Y := ((Z ÷ Y ) ↓)′

d(Z, Y ) := [Z ∪ ((Z ↓)′ ∩ L)] ∩ [Y ∪ ((Y ↓)′ ∩ L)],

1 := Cm(A),

for Z, Y ∈ H(A).

Proof: From [17, Proposition 4.8] we deduce thatM(a) is a hereditary set,
so the map M is well defined. Next, we conclude from [17, Theorem 4.14]
that M is a bijection which preserves the equivalence operation. Clearly,
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if Z = Cm(A), then Z =M(1). Thus, it suffices to show that M preserves
d.

Of course, we have L ⊆ d(Z, Y ) for all Z, Y ∈ H(A), and so d(Z, Y ) is
a hereditary set. Moreover, Z ∩ Y ⊆ d(Z, Y ). We show that

M(d(a, b)) = [M(a) ∪ ((M(a) ↓)′ ∩ L)] ∩ [M(b) ∪ ((M(b) ↓)′ ∩ L)],

for all a, b ∈ A. We recall that if µ ∈ L, then d(a, b)/µ = 1/µ, and if µ ∈ P ,
then d(a, b)/µ = a/µ ∧ b/µ. We show inclusion both ways.

„⊆” Let µ ∈M(d(a, b)). We need consider three cases:

1) µ ∈ L. Then the inclusion is obvious.

2) µ ∈ P . Then

µ ∈M(d(a, b)) ⇒ d(a, b) ∈ 1/µ⇒ d(a, b)/µ = 1/µ⇒

a/µ = 1/µ and b/µ = 1/µ⇒ a ∈ 1/µ and b ∈ 1/µ⇒

µ ∈M(a) and µ ∈M(b) ⇒ µ ∈M(a) ∩M(b).

3) µ ∈ L. In this situation we get µ ∈ M(d(a, b)) ⇒ d(a, b)/µ = 1/µ ⇒
a/µ ̸= ∗/µ and b/µ ̸= ∗/µ. The following cases are possible:

a) a/µ = b/µ = 1/µ. Then µ ∈M(a) ∩M(b).

b) a/µ = b/µ = 0/µ. Therefore

a/µ+ = b/µ+ = 0/µ+ ⇒ a, b /∈ 1/µ+ ⇒ µ+ /∈M(a) and µ+ /∈M(b) ⇒

µ /∈M(a) ↓ and µ /∈M(b) ↓ ⇒ µ ∈ (M(a) ↓)′ and µ ∈ (M(b) ↓)′.

Hence µ ∈ [M(a) ∪ ((M(a) ↓)′ ∩ L)] ∩ [M(b) ∪ ((M(b) ↓)′ ∩ L)].
c) a/µ = 1/µ, b/µ = 0/µ (or vice versa). Then a ∈ 1/µ, so µ ∈ M(a).
Since b /∈ 1/µ+, so µ /∈M(b) ↓, and consequently µ ∈ (M(b) ↓)′. Thus

µ ∈ [M(a) ∪ ((M(a) ↓)′ ∩ L)] ∩ [M(b) ∪ ((M(b) ↓)′ ∩ L)].

„⊇” Let µ ∈ [M(a) ∪ ((M(a) ↓)′ ∩ L)] ∩ [M(b) ∪ ((M(b) ↓)′ ∩ L)]. Once
again we need consider three cases:

1) µ ∈ L. Then d(a, b)/µ = 1/µ⇒ d(a, b) ∈ 1/µ⇒ µ ∈M(d(a, b)).

2) µ ∈ P . In this case:
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µ ∈M(a) ∩M(b) ⇒ µ ∈M(a) and µ ∈M(b) ⇒ a/µ = 1/µ

and b/µ = 1/µ⇒ d(a, b)/µ = 1/µ⇒ d(a, b) ∈ 1/µ⇒ µ ∈M(d(a, b)).

3) µ ∈ L. Let us consider the following cases:

a) µ ∈M(a) and µ ∈M(b). Then

a, b ∈ 1/µ⇒ a/µ = b/µ = 1/µ⇒ d(a, b)/µ = 1/µ⇒

d(a, b) ∈ 1/µ⇒ µ ∈M(d(a, b)).

b) µ ∈M(a) and µ ∈ (M(b) ↓)′ (or analogously: µ ∈ (M(a) ↓)′ and µ ∈
M(b)). Therefore a/µ = 1/µ and b/µ = 0/µ. Then d(a, b)/µ = 1/µ, so
d(a, b) ∈ 1/µ, and consequently µ ∈M(d(a, b)).

c) µ ∈ (M(a) ↓)′ and µ ∈ (M(b) ↓)′. Then a/µ = b/µ = 0/µ, so we get
as above d(a, b)/µ = 1/µ. Thus d(a, b) ∈ 1/µ, and hence µ ∈ M(d(a, b)).
Finally, we conclude that M preserves d, and so M is the isomorphism as
claimed.

Example 6.3. Let A = {∗, 1}3 ∪ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (∗, 0, 0), (0, ∗, 0),
(0, 0, 0)}. Thus A is closed under equivalence operation · and (A, ·) is the
smallest equivalential algebra, which is not a reduct of a Heyting algebra,
see [13, Example 3]. Moreover, d(x, y) ∈ {1, ∗}3 for all x, y ∈ D3. Therefore
A = (A, ·, d) ∈ S(D3).

Let us consider three subsetes of A: F1 := {∗, 1}3 ∪ {(1, 0, 0), (∗, 0, 0)},
F2 := {∗, 1}3 ∪ {(0, 1, 0), (0, ∗, 0)} and F3 := {∗, 1}3 ∪ {(0, 0, 1), (0, 0, ∗)}.
Then the relations µi for i ∈ {1, 2, 3}, defined by: a ≡µi

b iff ab ∈ Fi for
all a, b ∈ A, are congruences of A. Moreover, an easy computation shows
that 1/µi = Fi for all i ∈ {1, 2, 3} (where 1 = (1, 1, 1)) and a/µi = A \ Fi

for all a ∈ A \Fi. Choosing a = (a1, a2, a3) ∈ {0, 1}3 for every i ∈ {1, 2, 3},
we get: d(1/µi, a/µi) = (d(1, a1), d(1, a2), d(1, a3))/µi = 1/µi. Therefore
A/µi

∼= 2.
Next, let us consider 5-element subsets Gi ⊆ Fi, for i ∈ {1, 2, 3}: G1 :=

{(1, x, y) : x, y ∈ {1, ∗}} ∪ {(1, 0, 0)}, G2 := {(x, 1, y) : x, y ∈ {1, ∗}} ∪
{(0, 1, 0)}, G3 := {(x, y, 1) : x, y ∈ {1, ∗}} ∪ {(0, 0, 1)}. Relations νi, which
are designated by these subsetes (a ≡νi b iff ab ∈ Gi), are congruences of A.
Moreover, 1/νi = Gi and c/νi = Fi \ Gi, a/νi = a/µi for all c ∈ Fi \ Gi,
a ∈ A \ Fi. Thus A/νi ∼= D.
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Finally, we get that Cm(A) has the form as shown in Figure 2. It is
easy to check that, according to Theorem 6.2, this frame corresponds to the
14-element algebra A. We can also deduce that A is directly irreducible.

µ1

ν1

µ2

ν2

µ3

ν3

Figure 2.

In general situation, we show that every finite algebra from V(D) can
be naturally decomposed as the direct product of two algebras. Recall that
L = {µ ∈ Cm(A) : A/µ ∼= 2 or A/µ ∼= D} and P = {µ ∈ Cm(A) : A/µ ∼=
2∧}.

Proposition 6.4. Let A ∈ V(D) be finite. Then:

A ∼= A/⋂L ×A/⋂P .

Proof: As A is finite, so 1A =
∨n

i=1 αi, where αi (i ∈ {1, . . . , n}) are
join-irreducible congruences. Clearly,

⋂
L∧

⋂
P = Cm(A) = 0A. We need

to prove that αi ⊆
⋂
L ∨

⋂
P for all i ∈ {1, . . . , n}. Let i ∈ {1, . . . , n}.

Assume that αi ⊈
⋂
L. We show that αi ⊆

⋂
P . Suppose, contrary to

our claim, that there exists µ ∈ P such that αi ⊈ µ. Then αi ∨ µ = 1A

and αi ∧µ < αi. Thus the intervals I[αi ∧µ, α] and I[µ,1A] are projective,
and, consequently, αi∧µ = α−

i . On the other hand, there exists ν ∈ L such
that αi ⊈ ν and αi ⊆ ν+. Therefore, the intervals I[α−

i , α] and I[ν, ν+] are
projective. Thus, we get ν ∼ µ, a contradiction.
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7. Free algebras in V(D) – a sketch of construction

Now, we can construct the finitely generated free algebras in V(D). We
will denote by FD(n) the free n-generated algebra in V(D) in which X =
{x1, x2, . . . , xn} is the n-element set of free generators. Observe that if µ ∈
Cm(FD(n)), then we can identify µ with a map f which sends free genera-
tors in k, where k ∈ {D,2,2∧}, in such a way that f−1({∗}) ̸= ∅. This map
can be uniquely extended to a surjective homomorphism f : FD(n) −→ k.
It follows that ker f ∈ Cm(FD(n)). So, the construction of the frame
Cm(FD(n)) is similar to the construction of the frame of the equivalential
algebras with conjunction on the regular elements, described in [11].

This construction proceeds as follows:

1. Each µ ∈ Cm(FD(n)) is labelled by the set indices {i : xi ∈ X ∩
(1/µ)} ⊆ {1, . . . , n}.

2. L has 2n−1 elements labelled by all proper subsets of {1, . . . , n} and
these elements form only one equivalence class.

3. P has 2n−1 elements also labelled by all proper subsets of {1, . . . , n},
but in this case each element forms a one-element equivalence class.

4. If µ ∈ L is labelled by S ⊊ {1, . . . , n}, then below µ (i. e., in L) there
are elements labelled by all proper subsets of S.

5. Each µ ∈ L forms a one-element equivalence class.

In the figures below:

a. Each dot denotes an element of the frame.

b. Straight lines denote a partial ordering directed upwards.

c. The equivalence class with more than one element is marked with an
ellipse.

d. Each dot that does not lie in an ellipse denotes a one-element equiv-
alence class.

7.1. The frame of FD(2) – the free algebra in V(D) with two
free generators

The set Cm(FD(2)) has 8 elements (Figure 3): 5 on the left-hand side (all
elements at the top form one equivalence class and the elements at the
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{1} ∅ {2}

∅ ∅

{1} ∅ {2}

Figure 3. Cm(FD(2))

bottom form one-element equivalence classes) and 3 on the right-hand side
(each in a separate equivalence class). So, there are 9 hereditary sets on
the left-hand side and 8 hereditary sets on the right-hand side. Finally,
|FD(2)| = 9 · 8 = 72.

7.2. The frame of FD(3) – the free algebra in V(D) with three
free generators

The set Cm(FD(3)) has 26 elements (Figure 4): 7 on the left-hand side at
the top, 12 on the left-hand side at the bottom, and 7 on the right-hand side.
On the left-hand side there are 4536 hereditary sets, and on the right-hand
side there are 128 hereditary sets. Finally, |FD(3)| = 4536 · 128 = 580608.

{1,2} {1,3} {2,3} {1} {2} {3} ∅

{1} ∅ {2} {1} ∅ {3} {2} ∅ {3} ∅ ∅ ∅

{1,2}{1,3}{2,3} {1} {2} {3} ∅

Figure 4. Cm(FD(3))

Using Theorem 6.2 and the construction above one can also find the
formula for the free spectrum. We plan to publish these result in the next
article, which will be a continuation of this paper.
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