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LINEAR ABELIAN MODAL LOGIC

Abstract

A many-valued modal logic, called linear abelian modal logic LK(A) is intro-

duced as an extension of the abelian modal logic K(A). Abelian modal logic

K(A) is the minimal modal extension of the logic of lattice-ordered abelian

groups. The logic LK(A) is axiomatized by extending K(A) with the modal

axiom schemas □(φ ∨ ψ) → (□φ ∨□ψ) and (□φ ∧□ψ) → □(φ ∧ ψ). Complete-

ness theorem with respect to algebraic semantics and a hypersequent calculus

admitting cut-elimination are established. Finally, the correspondence between

hypersequent calculi and axiomatization is investigated.
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cut-elimination.
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1. Introduction

Many-valued modal logics combine the Kripke frame semantics of classical
modal logic with a many-valued semantics at each world. As in the clas-
sical setting, they provide a compromise between the good computational
properties (decidability and low complexity) of propositional logics and
the expressivity of first-order logics. Such logics have been used to model
modal notions such as fuzzy similarity measures [14], fuzzy modal logic for
belief functions (see, e.g., [13, 11]), probabilistic logics (see, e.g., [12, 21]),
many-valued tense logics (see, e.g., [9, 16]),  Lukasiewicz µ-calculus [22],
continuous propositional modal logic [3], and serve as a basis for defining
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fuzzy description logics (see, e.g., [2, 15, 24]), dealing with fuzzy concepts
and ontologies.

Several many-valued modal logics with propositional connectives inter-
preted in the ordered additive group of real numbers have been studied.
These logics make use of basic operations on the real numbers and have
been studied in a wide range of different contexts.

Recently, monadic logic of ordered abelian groups [19] and abelian
modal logic K(A) [10] are introduced by G. Metcalfe and co-authors.
Monadic logic of ordered abelian groups serves as a modal counterpart
of the one-variable fragment of a (monadic) first-order real-valued logic.
Propositional connectives are interpreted as the usual lattice and group
operations over the real numbers in abelian modal logic K(A).

Abelian modal logic K(A) is the minimal modal extension of the abelian
logic A. Abelian logic A is the logic of lattice-ordered abelian groups,
introduced independently by Meyer and Slaney [20] as a relevance logic,
and Casari [4] as a comparative logic. In both settings, A was defined via
axiom systems that are complete with respect to validity in the variety of
lattice-ordered abelian groups.

As mentioned in [19], there are several advantages to focusing on modal
extensions of Abelian logic, including that the language is rich enough to
interpret other logics (e.g., modal extensions of Lukasiewicz logic), the
semantics are based directly on structures studied in algebra and computer
science, and the logics are naturally separated into the group and lattice
fragments.

In [17], two embeddings of  Lukasiewicz logic into Meyer and Slaney’s
Abelian logic and analytic proof systems for abelian logic are presented. In
[10], a tableau calculus for the full logic K(A) and a sequent calculus for the
modal-multiplicative fragment of K(A) as first steps towards addressing
the corresponding (much more challenging) problems for the full logic, and
complexity result are obtained.

The first main contribution of this work is to provide an axiomatization
and algebraic semantics for the full logic K(A), which is addressed as an
open question in the concluding remarks of [10]. The second aim is to
develop a hypersequent calculus for the full logic K(A).

A real-valued modal logic, called linear abelian modal logic LK(A),
as an extension of the minimal normal modal logic K(A) is introduced.
An axiom system and also algebraic semantics for LK(A) are presented.
Indeed, LK(A) is an extension of K(A) with the modal axiom schemas:
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□(φ ∨ ψ) → (□φ ∨□ψ) and (□φ ∧□ψ) → □(φ ∧ ψ). The converse of the
these axioms, i.e., (□φ ∨ □ψ) → □(φ ∨ ψ) and (□φ ∧ □ψ) → □(φ ∧ ψ)
is derivable in LK(A). Thus, the modal operator □ distributes over the
both operators ∨ and ∧ with an equivalence. It is well known that usually,
necessity doesn’t distribute over disjunction with an equivalence in the
modal logic. So, it may be interesting to study logics like LK(A) in which
necessity distributes over disjunction with an equivalence.

Moreover, completeness of the axiom system with respect to both corre-
sponding appropriate algebras and linearly ordered algebras with a lattice-
ordered abelian groups reduct, using methods of abstract algebraic logic
is investigated. A hypersequent calculus called HLK(A) for LK(A), ex-
tending the sequent calculus for the modal-multiplicative fragment of K(A)
(introduced in [10]) is presented. Finally, the cut-elimination theorem and
the correspondence between the hypersequent calculus and the axiomati-
zation are established.

The paper is structured as follows. In the next section, syntax and se-
mantics of Linear Abelian Modal Logic are introduced. Then, in Section 3
the completeness theorem with respect to both appropriate algebras and
linearly ordered algebras is proved. The cut-elimination theorem as well
as the correspondence between the hypersequent calculus and the axiom-
atization are investigated in Section 4. Finally, Section 5 concludes the
paper.

2. Linear abelian modal logic

In this section, we introduce a many-valued modal logic, namely linear
abelian modal logic LK(A) as an extension of the minimal normal modal
logic K(A) extending Abelian logic A, the logic of lattice-ordered abelian
groups. We provide an axiom system and also algebraic and Kripke seman-
tics for LK(A). Finally, we establish a connection between algebraic and
Kripke semantics.

2.1. Axiomatizations

The language L□
A of linear abelian modal logic LK(A) is consisting of the

binary connective ∧,∨,→ and unary connective □. The formula of LK(A)
is defined inductively by
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φ := p |φ ∧ ψ |φ ∨ ψ |φ→ ψ |□φ,

where p is a propositional variable. To define further connectives, let

0̄ := p→ p, ¬φ := φ→ 0̄, φ+ ψ := ¬φ→ ψ, ♢φ := ¬□¬φ,

and φ↔ ψ := (φ→ ψ)∧ (ψ → φ). We also define 0φ := 0̄ and (n+ 1)φ :=
φ+(nφ) for each n ∈ N. Let us also denote by Fm the set of formulas of L□

A

over a countably infinite set of variables. An axiomatization of the minimal
normal modal logic K(A) is presented in Table 1. An axiom system of

Table 1. An Axiom System for Abelian Modal Logic K(A)

(B) (φ→ ψ) → ((ψ → χ) → (φ→ χ))
(I) φ→ φ

(C) (φ→ (ψ → χ)) → (ψ → (φ→ χ))
(A) ((φ→ ψ) → ψ) → φ

(+1) φ→ (ψ → φ+ ψ)
(+2) (φ→ (ψ → χ)) → ((φ+ ψ) → χ)
(0̄1) 0̄
(0̄2) φ→ (0̄ → φ)
(∧1) (φ ∧ ψ) → φ
(∧2) (φ ∧ ψ) → ψ
(∧3) ((φ→ ψ) ∧ (φ→ χ)) → (φ→ (ψ ∧ χ))
(∨1) φ→ (φ ∨ ψ)
(∨2) ψ → (φ ∨ ψ)
(∨3) ((φ→ χ) ∧ (ψ → χ)) → ((φ ∨ ψ) → χ)
(K) □(φ→ ψ) → (□φ→ □ψ)

(Dn) □(nφ) → n□φ (n ≥ 2)
φ φ→ ψ

(mp)
ψ

φ
(nec)

□φ
φ ψ

(adj)
φ ∧ ψ

linear abelian modal logic LK(A) is defined over L□
A by extending K(A)

with the following modal axiom schemas:

(∨□) □(φ ∨ ψ) → (□φ ∨□ψ),

(∧□) (□φ ∧□ψ) → □(φ ∧ ψ).
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For a formula φ ∈ Fm, we write ⊢LK(A) φ if there exists a LK(A)-

derivation of φ, defined as usual as a finite sequence of L□
A-formulas that

ends with φ and is constructed inductively using the axioms and rules of
LK(A).

Proposition 2.1. For any φ,ψ ∈ Fm,

(i) ⊢LK(A) (□φ ∨□ψ) → □(φ ∨ ψ),

(ii) ⊢LK(A) □(φ ∧ ψ) → (□φ ∧□ψ),

(iii) ⊢LK(A) n□φ→ □(nφ) (n ≥ 2).

Proof: Derivation for (i) is obtained, using the axiom schemas (∨1), (K),
and (∨3), and also rules (nec), (mp) and (adj) as follows:

1. ⊢LK(A) φ→ (φ ∨ ψ) (∨1)

2. ⊢LK(A) □(φ→ (φ ∨ ψ)) (nec)

3. ⊢LK(A) □(φ→ (φ ∨ ψ)) → (□φ→ □(φ ∨ ψ)) (K)

4. ⊢LK(A) □φ→ □(φ ∨ ψ) (2, 3 and (mp))

5. ⊢LK(A) □ψ → □(φ ∨ ψ) (similarly)

6. ⊢LK(A) (□φ→ □(φ ∨ ψ)) ∧ (□ψ → □(φ ∨ ψ)) (4, 5 and (adj))

7. ⊢LK(A) (□φ → □(φ ∨ ψ)) ∧ (□ψ → □(φ ∨ ψ)) → ((□φ ∨ □ψ) →
(□(φ ∨ ψ))) (∨3)

8. ⊢LK(A) (□φ ∨□ψ) → (□(φ ∨ ψ)) (6, 7 and (mp)

Derivation for (ii) is obtained, similar to the derivation of (i), using the
axiom schemas (∧1), (K) and (∧3), and also rules (nec), (mp) and (adj),
and is omitted here. For derivation of (iii), observe that n□φ → □(nφ)
is derivable in LK(A) for n ≥ 2 using (nec) and (mp) together with the
axioms of LK(A). For instance, (□φ + □φ) → □(φ + φ) is derivable as
follows:

1. ⊢LK(A) φ→ (φ→ (φ+ φ)) (+1)

2. ⊢LK(A) □(φ→ (φ→ (φ+ φ))) (nec)

3. ⊢LK(A) □(φ→ (φ→ (φ+ φ))) → (□φ→ □(φ→ (φ+ φ))) (K)
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4. ⊢LK(A) □φ→ □(φ→ (φ+ φ)) (2, 3 and (mp))

5. ⊢LK(A) □(φ→ (φ+ φ)) → (□φ→ □(φ+ φ)) (K)

6. ⊢LK(A) □φ→ (□φ→ □(φ+ φ)) ((B), 4, 5 and (mp))

7. ⊢LK(A) (□φ→ (□φ→ □(φ+φ))) → (□φ+□φ→ □(φ+φ)) (+2)

8. ⊢LK(A) □φ+ □φ→ □(φ+ φ) (6, 7 and (mp))

2.2. Semantics

In this subsection, algebraic semantics for LK(A) are presented. Appro-
priate class of algebras for LK(A) is defined over lattice-ordered abelian
groups.

Definition 2.2. A lattice-ordered abelian group (abelian ℓ-group for short)
is an algebraic structure (A,∧,∨,+,¬, 0̄) such that (A,+,¬, 0̄) is an abelian
group, (A,∧,∨) is a lattice, and a+(b∨c) = (a+b)∨(a+c) for all a, b, c ∈ A.
In addition, we define a→ b = ¬a+ b, and a ≤ b iff a ∨ b = b.

Well-known examples of abelian ℓ-groups are

the integers Z = (Z,min,max,+,−, 0),

the rationals Q = (Q,min,max,+,−, 0),

and the reals R = (R,min,max,+,−, 0).

In fact, any of them generates the variety of Abelian ℓ-groups (see [18] for
more details).

Below we introduce algebras for the logic defined in the previous section,
the idea being to consider particular classes of residuated lattices where
the modal operator is interpreted by a special unary operator I on the
corresponding algebras.

Definition 2.3 (LK(A)-algebra). An LK(A)-algebra is an algebra A =
(A,∧,∨,+,¬, 0̄, I), where the reduct (A,∧,∨,+,¬, 0̄) is an abelian ℓ-group
and I is an unary operation satisfying:

1. I(x→ y) ≤ I(x) → I(y),

2. I(x ∨ y) = I(x) ∨ I(y),

3. I(x ∧ y) = I(x) ∧ I(y),



Linear Abelian Modal Logic 7

4. I(x+ x) = I(x) + I(x),

5. I(0̄) = 0̄.

An A-valuation is a function V : Fm → A satisfying V (φ⋆ψ) = V (φ) ⋆
V (ψ) for ⋆ ∈ {∧,∨,→,+}, and V (□φ) = I(V (φ)). Formula φ is A-valid if
V (φ) ≥ 0̄ for each A-valuation V . We write |=LK(A) φ iff φ is valid in all
LK(A)-algebras.

Example 2.4. Consider the real number structure R = (R,min,max,+,−,
0, I), where I is defined as follows:

I : R −→ R
I(x) = min{x, 0},

One can easily prove that this structure is an LK(A)-algebra. Note that
min{x + y, 0} ≠ min{x, 0} + min{y, 0} (consider, for example x = 1 and
y = −1), i.e., I(x+ y) ̸= I(x) + I(y). While, min{x+ x, 0} = min{x, 0} +
min{x, 0}, i.e., I(x+ x) = I(x) + I(x).

3. Completeness

In this section, we will establish the completeness theorem with respect to
the corresponding algebraic semantics proceeding in the standard way (see
e.g [18, 5, 8]). Given T ⊆ Fm, the Lindenbaum algebra is defined in the
usual way as AT = (AT ,∧T ,∨T ,+T ,¬T , 0̄T , IT ) where AT = {[φ]T : φ ∈
Fm}, [φ]T = {ψ ∈ Fm : T ⊢LK(A) φ ↔ ψ}, [φ]T ⋆T [ψ]T = [φ ⋆ ψ]T for
⋆ ∈ {+,∨,∧}, ¬T [φ] = [¬φ]T , 0̄T = [0̄]T , and IT [φ]T = [□φ]T . The next
Lemma follows from various provabilities in LK(A) and the axioms.

Lemma 3.1. AT is an LK(A)-algebra.

To show that AT -validity corresponds to LK(A)-derivability from T ,
we make use of a specially defined valuation for this algebra that maps each
formula to its corresponding equivalence class.

Lemma 3.2. For any T ⊆ Fm and φ ∈ Fm:

T ⊢LK(A) φ iff 0̄ ≤ VT (φ),

where VT is the MT -valuation defined by VT (p) = [p]T for each proposi-
tional variable p.
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Proof: We first prove that VT (φ) = [φ]T for all formulas φ, by induction
on the complexity of φ. The case where φ is a variable follows by definition.
For the other cases, just note that for any connective ⋆ ∈ {+,∨,∧} (using
the induction hypothesis):

VT (φ ⋆ ψ) = VT (φ) ⋆ VT (ψ)

= [φ]T ⋆ [ψ]T

= [φ ⋆ ψ]T

For unary connective □, we have: VT (□φ) = IT (VT (φ)) = IT ([φ]T ) =
[□φ]T . The result then follows because [0̄]T ≤ [φ]T iff T ⊢LK(A) 0̄ → φ iff
T ⊢LK(A) φ.

Theorem 3.3 (Completeness). T |=LK(A) φ iff T ⊢LK(A) φ.

Proof: Soundness proceeds as usual by an induction on the height of
a derivation of φ in LK(A), showing that each axiom is valid and each
rule sound in all LK(A)-algebras. For the reverse direction, assume that
T ⊬LK(A) φ. By the previous lemma, VT (ψ) ≥ 0̄ for each ψ ∈ T where
VT (φ) ≱ 0̄. So T ⊭ φ.

We now turn our attention, following [6, 7, 8], next to completeness with
respect to linearly ordered algebras. First, let us say that a congruence filter
of an LK(A)-algebra A is a set F = {x ∈ A : ∃y ≤ x (yθ0̄)}, for some
congruence θ on A. The next Lemma follows from the fact that the reduct
of an LK(A)-algebra is an abelian ℓ-group.

Lemma 3.4. Let A = (A,∧,∨,+,¬, 0̄, I) be an LK(A)-algebra and a, b, c, d
∈ A. If a ≤ b and c ≤ d, then a+ c ≤ b+ d.

Corollary 3.5. Let A = (A,∧,∨,+,¬, 0̄, I) be an LK(A)-algebra and
a, b ∈ A. If a, b ≤ 0̄, then (a+ b) ≤ (a ∨ b).

Proof: Let a, b ≤ 0̄, then a∨b ≤ 0̄ and so, by Lemma 3.4, (a∨b)+(a∨b) ≤
a ∨ b since (a ∨ b) ≤ (a ∨ b). Now, a ≤ a ∨ b and b ≤ a ∨ b follows that
a+ b ≤ (a ∨ b) + (a ∨ b) ≤ a ∨ b.

Lemma 3.6. F is a congruence filter of an LK(A)-algebra A iff (i) 0̄ ∈ F
(ii) if a ∈ F and a→ b ∈ F , then b ∈ F (iii) if a ∈ F then I(a) ∈ F .

Proof: That a congruence filter must satisfy (i), is almost immediate.
We check (ii) and (iii). If a ∈ F and a → b ∈ F , then there are u, v ∈ A
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such that u ≤ a, v ≤ a → b and uθa and vθ(a → b). So, by Lemma 3.4,
u + v ≤ a + (a → b) i.e., u + v ≤ a + (¬a + b). Therefore, by equations
0̄ + a = a and ¬a + a = 0̄ of the definition of abelian ℓ-group and the
compatibility of congruence with (+) , we have (u+ v) ≤ b and (u+ v)θb.
Thus, b ∈ F . If a ∈ F , then there is u ∈ A such that u ≤ a and uθa. It
follows that I(u) ≤ I(a) and I(u)θI(a), since u ≤ a i.e., u ∨ a = a follows
that I(u ∨ a) = I(a) so I(u) ∨ I(a) = I(a) i.e., I(u) ≤ I(a), and hence
I(a) ∈ F . Conversely, let F be a subset of A that satisfies the conditions,
and let θ be defined by aθb iff a → b ∈ F and b → a ∈ F . One can easily
show that θ is a equivalence relation. Thus, we may define equivalence
classes [a]F = {b | aθb}. We prove that θ is compatible with the operations
of LK(A)-algebras.

• θ is compatible with (+): If aθb and cθd, then a→ b, b→ a ∈ F and
c→ d, d→ c ∈ F , therefore (a→ b)+(c→ d), (b→ a)+(d→ c) ∈ F ,
as F is closed under (+). It follows that (¬a + b) + (¬c + d), (¬b +
a) + (¬d + c) ∈ F , and so ¬(a + c) + (b + d),¬(b+ d) + (a + c) ∈ F
i.e., (a+ c) → (b+ d), (b+ d) → (a+ c) ∈ F . Thus, (a+ c)θ(b+ d).

• θ is compatible with (∨): Since θ is an equivalence relation, we de-
fine equivalence classes [a]θ = {b | aθb}. Let A/θF be the set of all
equivalence classes. One verifies that
(A/θF ,∩,∪,+F ,¬F , 0F , IF ), where ∩,∪,+F ,¬F , 0F , IF are defined
component-wise from the ones of A, is an LK(A)-algebra. If aθb
and cθd, then [a]θ = [b]θ and [c]θ = [d]θ. It follows that [a]θ ∪ [c]θ =
[b]θ ∪ [d]θ, and so [a ∨ c]θ = [b ∨ d]θ. Therefore, (a ∨ c)θ(b ∨ d). The
compatibility of θ with (∧) is treated similarly.

• θ is compatible with (¬): If aθb , then a → b, b → a ∈ F , i.e.,
¬a + b,¬b + a ∈ F . Therefore, ¬b + ¬(¬a),¬a + ¬(¬b) ∈ F , i.e.,
¬a→ ¬b,¬b→ ¬a ∈ F . Thus ¬aθ¬b.

• θ is compatible with (I): If aθb , then a → b, b → a ∈ F . Therefore
I(a → b), I(b → a) ∈ F , as F is closed under I. It follows that
I(a) → I(b), I(b) → I(a) ∈ F . Thus, I(a)θI(b).

Now, by imitating [6], we define Fg(a) be the smallest congruence filter
containing a, and define inductively: I0(a) = a and In+1(a) = I(In(a)) ∧
In(a) for an LK(A)-algebra A and a ∈ A. Note that In+1(a) ≤ In(a),
thus, by induction, In(a) ≤ Im(a) for m ≤ n.
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Lemma 3.7. Let A = (A,∧,∨,+,¬, 0̄, I) be an LK(A)-algebra and a, b ∈
A. If a ≤ b, then In(a) ≤ In(b) for all n ∈ N.

Proof: We first observe that a ≤ b if and only if I(a) ≤ I(b):

a ≤ b iff a ∨ b = b iff I(a ∨ b) = I(b) iff I(a) ∨ I(b) = I(b) iff I(a) ≤ I(b).

Let a ≤ b, by induction on n we can easily prove In(a) ≤ In(b). For n = 0,
obviously I0(a) ≤ I0(b). Suppose In(a) ≤ In(b), then I(In(a)) ≤ I(In(b)).
It follows that I(In(a))∧In(a) ≤ I(In(b))∧In(b) i.e., In+1(a) ≤ In+1(b).

Lemma 3.8. Let A = (A,∧,∨,+,¬, 0̄, I) be an LK(A)-algebra and a, b ∈
A. Then In(a ∨ b) = In(a) ∨ In(b) for all n ∈ N.

Proof: First observe that by induction on n we can easily prove In(a) ≤ a
for all n ∈ N: For n = 0, I0(a) = a ≤ a. Suppose In(a) ≤ a, then In+1(a) =
I(In(a)) ∧ In(a) ≤ In(a) ≤ a. Suppose now that In(a ∨ b) = In(a) ∨ In(b),
then I(In(a∨b)) = I(In(a)∨In(b)), so I(In(a∨b)) = I(In(a))∨I(In(b)). It
follows that I(In(a∨ b))∧ In(a∨ b) = (I(In(a))∧ In(a))∨ (I(In(b))∧ In(b))
i.e., In+1(a ∨ b) = In+1(a) ∨ In+1(b).

Lemma 3.9. Let A = (A,∧,∨,+,¬, 0̄, I) be an LK(A)-algebra and a ∈ A.
Then

Fg(a) = {x ∈ A | ∃n,m ∈ N (mIn(a) ≤ x)},

where 1In(a) = In(a) and (n+ 1)In(a) = In(a) + nIn(a).

Proof: Let G = {x ∈ A | ∃n,m ∈ N (mIn(a) ≤ x)}. We show that
G ⊆ Fg(a); suppose x ∈ G, then there is n,m ∈ N such that mIn(a) ≤ x.
It follows that x ∈ Fg(a) because a ∈ Fg(a) and Fg(a) is closed upwards
and closed under I,+, and ∧. For the opposite direction, since a ∈ G, it
suffices to prove that G is a congruence filter. It is trivial that 0̄ ∈ G. If
x, x → y ∈ G, then there are m1, n1,m2, n2 ∈ N such that m1(In1

(a)) ≤ x
and m2(In2(a)) ≤ x→ y. But then easily (m1+m2)(In1+n2(a)) ≤ x+(x→
y) = x + (¬x + y) = y, and hence y ∈ G. Finally, G is closed under I.
If x ∈ G, then there are an m,n such that m(In(a)) ≤ x. It follows that
mIn+1(a) ≤ mI(In(a)) = I(mIn(a)) ≤ I(x), and I(x) ∈ G. Thus, by
Lemma 3.6, G is a filter and a ∈ G. It follows that Fg(a) ⊆ G.

Theorem 3.10. Every subdirectly irreducible LK(A)-algebra A is linearly
ordered.
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Proof: Assume for a contradiction that A is a subdirectly irreducible
LK(A)-algebra with minimum non-trivial filter F and elements a, b such
that a ≰ b and b ≰ a. Then, both Fg(a→ b) and Fg(b→ a) are non-trivial
filters; hence they both contain F . Let c ∈ F with c < 0̄. Then, there are
m1, n1,m2, n2 ∈ N such that In1

(m1(a → b)) = m1In1
(a → b) ≤ c < 0̄

and In2
(m2(b → a)) = m2In2

(b → a) ≤ c < 0̄. It follows, by Lemma 3.7,
that m1(a → b) < 0̄ and m2(b → a) < 0̄. Let m = max{m1,m2}, then
m(a → b) < 0̄ and m(b → a) < 0̄. Therefore, by Lemma 3.5, m(a →
b) + m(b → a) ≤ m(a → b) ∨ m(b → a). Then, again by Lemma 3.7,
In(m(a → b) + m(b → a)) ≤ In(m(a → b) ∨ m(b → a)) for all n. Now,
letting n = max{n1, n2}, we have the following contradiction:

0̄ = In(0̄) = In((m(¬a) +mb) + (m(¬b) +ma))

= In(m(a→ b) +m(b→ a))

≤ In(m(a→ b) ∨m(b→ a))

= In(m(a→ b)) ∨ In(m(b→ a))

= mIn(a→ b) ∨mIn(b→ a)

≤ m1In(a→ b) ∨m2In(b→ a)

≤ m1In1(a→ b) ∨m2In2(b→ a)

≤ c ∨ c = c < 0̄.

Hence, making use of Birkhoff’s subdirect representation theorem, we
have the following Corollary.

Corollary 3.11. Every LK(A)-algebra is isomorphic to a subdirect prod-
uct of a family of linearly ordered LK(A)-algebras.

4. A hypersequent calculus for LK(A)

In this section, a proof system for LK(A), called HLK(A) in the frame-
work of hypersequent, is presented. Hypersequent is a generalization of se-
quents introduced independently by Avron [1] and Pottinger [23]. HLK(A)
extends the sequent calculus for the modal multiplicative fragment of
K(A) [10]. Then, the cut elimination theorem is established and finally
it is shown that the axiomatic and hypersequent presentations really char-
acterize the same logics.
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Since in this section we will often be dealing with quite complicated
structures, let us recall some notational conveniences:

• φ,ψ, χ and Γ,∆,Π,Σ (sometimes with primes or numerical subscripts)
denote arbitrary formulas and finite multisets of formulas, respec-
tively. The multiset union Γ ⊎ ∆ is often denoted by Γ,∆. In addi-
tion, nΓ or sometimes Γn is used for Γ, . . . ,Γ (n times), and □Γ for
{□φ : φ ∈ Γ}.

• a sequent is an ordered pair of finite multisets of formulas Γ and
∆, written Γ ⇒ ∆. A hypersequent is a finite multiset of ordinary
sequents, written Γ1 ⇒ ∆1 | · · · |Γn ⇒ ∆n.

• G,H,G, H (possibly with primes) denote hypersequents, [Gi]
n
i=1 de-

notes the hypersequent G1 | . . . |Gn, and also {Gi}ni=1 denotes a set of
hypersequents G1, . . . ,Gn (perhaps the premises of some rule applica-
tion).

The intended interpretation of the hypersequent H = Γ1 ⇒ ∆1 | . . . |Γn ⇒
∆n is defined as follows:

I(H) = (
∑

Γ1 →
∑

∆1) ∨ · · · ∨ (
∑

Γn →
∑

∆n),

where Σ{φ1, . . . , φm} := φ1+. . .+φm and Σ∅ = 0̄. Axioms and rules of hy-
persequent calculus HLK(A) is presented in Table 2. For a hypersequent
H, we write ⊢HLK(A) H if there is a HLK(A)-derivation of H.
The following rules for other connectives are HLK(A)-derivable:

Γ, φ, ψ ⇒ ∆ |H
(L+)

Γ, φ+ ψ ⇒ ∆ |H
Γ ⇒ φ,ψ,∆ |H

(R+)
Γ ⇒ φ+ ψ,∆ |H

Γ ⇒ φ,∆ |H
(L¬)

Γ,¬φ⇒ ∆ |H
Γ, φ⇒ ∆ |H

(R¬)
Γ ⇒ ¬φ,∆ |H

Γ ⇒ ∆ |H
(L0̄)

Γ, 0̄ ⇒ ∆ |H
Γ ⇒ ∆ |H

(R0̄)
Γ ⇒ 0̄,∆ |H

Example 4.1. Below we provide an example of a HLK(A)-derivation to
get more familiar with this calculus.
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Table 2. Hypersequent Calculus HLK(A)

Axiom:

(AX)
Γ ⇒ Γ |H

Logical rules:

Γ, ψ ⇒ φ,∆ |H
(L→)

Γ, φ→ ψ ⇒ ∆ |H
Γ, φ⇒ ψ,∆ |H

(R→)
Γ ⇒ ∆, φ→ ψ |H

Γ, φ⇒ ∆ |Γ, ψ ⇒ ∆ |H
(L∧)

Γ, φ ∧ ψ ⇒ ∆ |H
Γ ⇒ φ,∆ |H Γ ⇒ ψ,∆ |H

(R∧)
Γ ⇒ ∆, φ ∧ ψ |H

Γ, φ⇒ ∆ |H Γ, ψ ⇒ ∆ |H
(L∨)

Γ, φ ∨ ψ ⇒ ∆ |H
Γ ⇒ φ,∆ |Γ ⇒ ψ,∆ |H

(R∨)
Γ ⇒ ∆, φ ∨ ψ |H

Modal rule:

Γ ⇒ nφ |H
(□n)

□Γ ⇒ n□φ |H

Structural rules:

Γ, φ⇒ ∆ |H Π ⇒ φ,Σ |H
(Cut)

Γ,Π ⇒ Σ,∆ |H
Γ ⇒ ∆ |Γ ⇒ ∆ |H

(EC)
Γ ⇒ ∆ |H

Γ ⇒ ∆ |H Π ⇒ Σ |H
(Mix)

Γ,Π ⇒ ∆,Σ |H
Γ,Π ⇒ Σ,∆ |H

(Split)
Γ ⇒ ∆ |Π ⇒ Σ |H

(AX)
φ⇒ φ |ψ ⇒ φ ∧ ψ

(AX)
φ,ψ ⇒ φ,ψ

(Split)
φ⇒ ψ |ψ ⇒ φ

(AX)
φ⇒ ψ |ψ ⇒ ψ

(R∧)
φ⇒ ψ |ψ ⇒ φ ∧ ψ

(R∧)
φ⇒ φ ∧ ψ |ψ ⇒ φ ∧ ψ

(□1)
φ⇒ φ ∧ ψ |□ψ ⇒ □(φ ∧ ψ)

(□1)
□φ⇒ □(φ ∧ ψ) |□ψ ⇒ □(φ ∧ ψ)

(L∧)
□φ ∧ □ψ ⇒ □(φ ∧ ψ)

(R →)
⇒ □φ ∧ □ψ → □(φ ∧ ψ)
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We now consider a more complicated family of rules, indexed by k ∈
N\{0} and n ∈ N, that is inspired by Denisa Diaconescu et al [10] and will
be very useful in subsequent cut-elimination and completeness proofs:

Γ0 ⇒ |H Γ1 ⇒ kφ1 |H · · · Γn ⇒ kφn |H
(□k,n) where kΓ=Γ0,...,Γn∆,□Γ ⇒ □φ1, . . . ,□φn,∆ |H

Critically for our later considerations, □k,n is HLK(A)-derivable for all
k ∈ N \ {0}, n ∈ N (for k = 1, omitting the applications of (EC) and
(Split)):

(AX)
∆ ⇒ ∆ |H

Γ0 ⇒ |H
(□0)

□Γ0 ⇒ |H

Γ1 ⇒ kφ1 |H
(□k)

□Γ1 ⇒ k□φ1 |H

Γn ⇒ kφn |H
(□k)

□Γn ⇒ k□φn |H
(Mix)

.

.

.
(Mix)

□(Γ1 . . . ,Γn) ⇒ k□φ1, . . . , k□φn |H
(Mix)

□(Γ0,Γ1 . . . ,Γn) ⇒ k□φ1, . . . , k□φn |H
(Split), (EC)

□Γ ⇒ □φ1, . . . ,□φn |H
(Mix)

∆,□Γ ⇒ □φ1, . . . ,□φn,∆ |H

In order to prove the cut elimination theorem, we begin by showing that
every cut-free HLK(A)-derivation can be transformed into a derivation in
a restricted calculus HLK(A)

r
consisting only of the rules (AX), logical

rules, (□k,n)(k ∈ N \ {0}, n ∈ N), (Split) and (EC).

Lemma 4.2. The following rules are height-preserving HLK(A)
r
-admissible.

H (EW)
Γ ⇒ ∆ |H

Γ ⇒ ∆ |H
(IW)

Γ,Π ⇒ ∆,Π |H

Proof: By induction on the height of the premises.

Lemma 4.3. All logical rules are HLK(A)
r
-invertible.

Proof: To cope with multiple occurrences of formulas, we will need to
show the invertibility of more general rules. To show that (L →) is
HLK(A)

r
-invertible, we prove that the following rule is admissible in

HLK(A)
r

[Γi, [φ→ ψ]λi ⇒ ∆i]
n
i=1 |H

[Γi, [ψ]λi ⇒ [φ]λi ,∆i]
n
i=1 |H
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proceeding by induction on the height of a HLK(A)
r
-derivation of [Γi, [φ→

ψ]λi ⇒ ∆i]
n
i=1 |H. If λ1 = · · · = λn = 0, then the result follows immedi-

ately, so let us assume without loss of generality that λ1 ≥ 1. Then for the
base case, ∆j = Γj ⊎ [φ→ ψ]λj for j ∈ {1, . . . , n}, and it suffices to observe
that ⊢HLK(A)r Γj , [ψ]λj ⇒ [φ]λj ,Γj , [φ→ ψ]λj |H. For the inductive step,
we observe that when the last rule applied is not (□k,n), the claim follows
immediately by applying the induction hypothesis, where necessary twice,
and the relevant rule. Suppose now that the last rule applied is (□k,n), so
[φ→ ψ]λj must occur also on the right of the sequent as follows:

Γ′
0 ⇒ |H Γ′

1 ⇒ k[χ1] |H · · · Γ′
n ⇒ k[χn] |H

(□k,n)
Ωj , [φ→ ψ]λj ,□Γ′ ⇒ □χ1, . . . ,□χn, [φ→ ψ]λj ,Ωj |H

where Γj = Ωj⊎[φ→ ψ]λj⊎□Γ′ and ∆j = □χ1⊎. . .⊎□χn⊎[φ→ ψ]λj⊎Ωj ,
and also kΓ′ = Γ′

0 ⊎Γ′
1 ⊎ . . .⊎Γ′

n. Then the claim follows by first applying
the induction hypothesis and then applying the rule (□k,n) and (R →)
(λj times) as follows: where G is obtained from H by applying induction
hypothesis.

Γ′
0 ⇒ |G Γ′

1 ⇒ kχ1 | G · · · Γ′
n ⇒ kχn | G

(□k,n)
Ωj , [φ]λj , [ψ]λj ,□Γ′ ⇒ □χ1, . . . ,□χn, [φ]λj , [ψ]λj ,Ωj | G

(R→)(λj times)
Ωj , [ψ]λj ,□Γ′ ⇒ □χ1, . . . ,□χn, [φ]λj , [φ→ ψ]λj ,Ωj | G

The proof of HLK(A)
r
-invertibility of the rule (R →) is very similar. To

show that (L∧) is HLK(A)
r
-invertible, we prove, more generally, that the

following rule is admissible in HLK(A)
r

[Γi, [φ ∧ ψ]λi ⇒ ∆i]
n
i=1 |H

[Γi, [φ]λi ⇒ ∆i |Γi, [ψ]λi ⇒ ∆i]
n
i=1 |H

proceeding by induction on the height of a HLK(A)
r
-derivation of [Γi, [φ∧

ψ]λi ⇒ ∆i]
n
i=1 |H. If λ1 = · · · = λn = 0, then the result follows immedi-

ately using (EC), so let us assume without loss of generality that λ1 ≥ 1.
For the base case, ∆j = Γj ⊎ [φ ∧ ψ]λj for j ∈ {1, . . . , n} and it suffices to
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observe that Γj , [φ]λj ⇒ Γj , [φ∧ψ]λj |Γj , [ψ]λj ⇒ Γj , [φ∧ψ]λj | G is deriv-
able. For example, suppose λj = 1 for j = 1, first we have the following
derivation:

(AX)
Γ,Γ, φ, ψ ⇒ Γ,Γ, ψ, φ | G

(Split)
Γ, φ⇒ Γ, ψ |Γ, ψ ⇒ Γ, φ | G

(AX)
Γ, φ⇒ Γ, ψ |Γ, ψ ⇒ Γ, ψ | G

(R∧)
Γ, φ⇒ Γ, ψ |Γ, ψ ⇒ Γ, φ ∧ ψ | G.

Then, the conclusion is derived as follows:

(AX)
Γ, φ⇒ Γ, φ |Γ, ψ ⇒ Γ, φ ∧ ψ | G Γ, φ⇒ Γ, ψ |Γ, ψ ⇒ Γ, φ ∧ ψ | G

(R∧)
Γ, φ⇒ Γ, φ ∧ ψ |Γ, ψ ⇒ Γ, φ ∧ ψ | G

For the inductive step, we observe that when the last rule applied is not
(□k,n), the claim follows immediately by applying the induction hypothesis,
where necessary twice, and the relevant rule (see e.g. [18] Lemma 5.18 for
more details). Suppose now that the last rule applied is (□k,n), so [φ∧ψ]λj

must occur also on the right of the sequent as follows:

Γ′
0 ⇒ |H Γ′

1 ⇒ kχ1 |H · · · Γ′
n ⇒ kχn |H

(□k,n)
Ω,□Γ′, [φ ∧ ψ]λj ⇒ □χ1, . . . ,□χn,Ω, [φ ∧ ψ]λj |H

where Γj = Ω ⊎ □Γ′, and ∆j = Ω ⊎ □χ1 ⊎ · · · ⊎ □χn ⊎ [φ ∧ ψ]λj and also
kΓ′ = Γ′

0 ⊎ . . . ⊎ Γ′
n. Then the conclusion is obtained by first applying

the induction hypothesis to the premises and then applying (□k,n), (EW),
(Split) and (R∧) as required. For example suppose that λj = 1, the claim
is derived as follows:

D1

Γ′
0 ⇒ |G Γ′

1 ⇒ kχ1 | G · · · Γ′
n ⇒ kχn | G

(□k,n)
Ω,□Γ′, φ⇒ □χ1, . . . ,□χn,Ω, φ | G

(EW)
Ω,□Γ′, φ⇒ □χ1, . . . ,□χn,Ω, φ |Ω,□Γ′, ψ ⇒ □χ1, . . . ,□χn,Ω, φ | G

where G is obtained from H = [Γi, [φ ∧ ψ]λi ⇒ ∆i]
n
i=2 |H by applying

induction hypothesis. Similarly, we have

D2

Ω,□Γ′, φ⇒ □χ1, . . . ,□χn,Ω, φ |Ω,□Γ′, ψ ⇒ □χ1, . . . ,□χn,Ω, ψ | G.
Then, by applying (R∧) we have:

D1 D2
(R∧).

Ω,□Γ′, φ⇒ □χ1, . . . ,□χn,Ω, φ |Ω,□Γ′, ψ ⇒ □χ1, . . . ,□χn,Ω, φ ∧ ψ | G
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Now, by a similar argument, we have:

D′
1

2Γ′
0 ⇒ |G 2Γ′

1 ⇒ 2kχ1 | G · · · 2Γ′
n ⇒ 2kχn | G

(□2k,2n)
2Ω, 2□Γ′, φ, ψ ⇒ 2□χ1, . . . , 2□χn, 2Ω, φ, ψ | G

(Split).
Ω,□Γ′, φ⇒ □χ1, . . . ,□χn,Ω, ψ |Ω,□Γ′, ψ ⇒ □χ1, . . . ,□χn,Ω, φ | G

And, similar to the derivations D1 and D2, we have:

D′
2

Ω,□Γ′, φ⇒ □χ1, . . . ,□χn,Ω, ψ |Ω,□Γ′, ψ ⇒ □χ1, . . . ,□χn,Ω, ψ | G.

Now, by applying (R∧) we have:

D′
1 D′

2
(R∧).

Ω,□Γ′, φ⇒ □χ1, . . . ,□χn,Ω, ψ |Ω,□Γ′, ψ ⇒ □χ1, . . . ,□χn,Ω, φ ∧ ψ | G.

Finally, again by applying (R∧) the claim is obtained. The proof of
HLK(A)

r
-invertibility of the rule (R∨) is very similar. To show that (L∨)

is HLK(A)
r
-invertible, we prove that the following rules are admissible in

HLK(A)
r

[Γi, [φ ∨ ψ]λi ⇒ ∆i]
n
i=1 |H

[Γi, [φ]λi ⇒ ∆i]
n
i=1 |H

[Γi, [φ ∨ ψ]λi ⇒ ∆i]
n
i=1 |H

[Γi, [ψ]λi ⇒ ∆i]
n
i=1 |H

proceeding by induction on the height of the derivations of the premises.
We only consider the case that the last rule applied in the derivation of
the premise is (□k,n); the other cases are treated easily. Suppose that the
last rule applied is (□k,n), so [φ ∨ ψ]λj must occur also on the right of
the sequent as follows:

Γ′
0 ⇒ |H Γ′

1 ⇒ kχ1 |H · · · Γ′
n ⇒ kχn |H

(□k,n),
Ω,□Γ′, [φ ∨ ψ]λj ⇒ □χ1, . . . ,□χn,Ω, [φ ∨ ψ]λj |H

where Γj = Ω ⊎ □Γ′, and ∆j = Ω ⊎ □χ1 ⊎ · · · ⊎ □χn ⊎ [φ ∧ ψ]λj and also
kΓ′ = Γ′

0⊎ . . .⊎Γ′
n. Then, for λj = 1, the conclusion is obtained as follows:

Γ′
0 ⇒ |G Γ′

1 ⇒ kχ1 | G · · · Γ′
n ⇒ kχn | G

(□k,n)
Ω,□Γ′, φ⇒ □χ1, . . . ,□χn,Ω, φ | G

(EW)
Ω,□Γ′, φ⇒ □χ1, . . . ,□χn,Ω, φ |Ω,□Γ′, φ⇒ □χ1, . . . ,□χn,Ω, ψ | G

R∨
Ω,□Γ′, φ⇒ □χ1, . . . ,□χn,Ω, φ ∨ ψ | G
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where G is obtained from H = [Γi, [φ ∨ ψ]λi ⇒ ∆i]
n
i=2 |H by applying in-

duction hypothesis. The HLK(A)
r
-invertibility of the rule (R∧) is proved

similarly.

Lemma 4.4. The rule (Mix) is HLK(A)
r
-admissible.

Proof: To show the HLK(A)
r
-admissibility of (Mix), we prove, more

generally, that the following rule is admissible

[Γi ⇒ ∆i]
n
i=1 |H [Πj ⇒ Σj ]mj=1 |H

[ri1Γi, si1Π1 ⇒ ri1∆i, si1Σ1]ni=1 | · · · |[rimΓi, simΠm ⇒ rim∆i, simΣm]ni=1 |H

for all rij , sij ∈ N ∪ {0}. Proceeding by induction on the lexicographically
ordered pair consisting of the sum of the modal depth of the formulas in
the premises and the sum of the height of HLK(A)

r
-derivations D1 and D2

of [Γi ⇒ ∆i]
n
i=1 |H and [Πj ⇒ Σj ]

m
j=1 |H, respectively. If D1 and D2 have

height 0, then [Γi ⇒ ∆i]
n
i=1 |H and [Πj ⇒ Σj ]

m
j=1 |H are instances of (AX).

i.e., Γi = ∆i for some 1 ⩽ i ⩽ n, and Πj = Σj for some 1 ⩽ j ⩽ m, (in
particular if Γi, ∆i, Πj , and Σj contain only variables), then rijΓi⊎sijΠj =
rij∆i ⊎ sijΣj and so [ri1Γi, si1Π1 ⇒ ri1∆i, si1Σ1]ni=1 | · · · |[rimΓi, simΠm ⇒
rim∆i, simΣm]ni=1 |H is an instance of (AX). If the last application of rules
in D1 and D2 are not (□k,n) then the result follows easily by one (or two)
applications of the induction hypothesis and further applications of the
rule. For example, suppose D2 ends with

Π′, φ⇒ Σ1 |Π′, ψ ⇒ Σ1 |[Πj ⇒ Σj ]
m
j=2|H

(L∧),
Π′, φ ∧ ψ ⇒ Σ1|[Πj ⇒ Σj ]

m
j=2 |H

where Π1 = Π′ ⊎ [φ ∧ ψ]. An application of the induction hypothesis
to the HLK(A)

r
-derivation of the premise [Γi ⇒ ∆i]

n
i=1 together with a

HLK(A)
r
-derivation of

Π′, φ⇒ Σ1 |Π′, ψ ⇒ Σ1 |[Πj ⇒ Σj ]
m
j=2|H

yields

[ri1Γi, si1Π′, si1φ⇒ ri1∆i, si1Σ1]ni=1 | [ri1Γi, si1Π′, si1ψ ⇒ ri1∆i, si1Σ1]ni=1|
· · · |[rimΓi, simΠm ⇒ rim∆i, simΣm]ni=1 |H.
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It follows then that the following hypersequent is HLK(A)
r
-derivable

using
∑n

i=1 si1 times applications of the rule (L∧):

[ri1Γi, si1Π′, si1 (φ∧ψ) ⇒ ri1∆i, si1Σ1]ni=1 | · · · |[rimΓi, simΠm ⇒ rim∆i, simΣm]ni=1 |H.

The case where D2 ends with (R∨), (L →), (R →), (EC) or (Split) is
treated by a similar argument. If D2 ends with

Π′, φ⇒ Σ1 |[Πj ⇒ Σj ]
m
j=2|H Π′, ψ ⇒ Σ1 |[Πj ⇒ Σj ]

m
j=2|H

(L∨),
Π′, φ ∨ ψ ⇒ Σ1|[Πj ⇒ Σj ]

m
j=2 |H

where Π1 = Π′ ⊎ [φ ∨ ψ]. Then, by the induction hypothesis,

⊢HLK(A)[ri1Γi, si1Π′, si1φ⇒ ri1∆i, si1Σ1]ni=1| · · ·
|[rimΓi, simΠm ⇒ rim∆i, simΣm]ni=1 |H

⊢HLK(A) [ri1Γi, si1Π′, si1ψ ⇒ ri1∆i, si1Σ1]ni=1| · · ·
|[rimΓi, simΠm ⇒ rim∆i, simΣm]ni=1 |H

So, the conclusion is derived by
∑n

i=1 si1 times applications of (L∨). The
case where D2 ends with (R∧) is treated by a similar argument. Finally,
let us consider the case where D1 ends with an application of (□k,p) as
follows:

Γ0 ⇒ |G Γ1 ⇒ kφ1 |H · · ·Γp ⇒ kφp |H
(□k,p),

Ω,□Γ′ ⇒ □φ1, . . . ,□φp,Ω |H

where Γ1 = Ω ⊎ □Γ′ and ∆1 = [□φ1] ⊎ . . . ⊎ [□φp] ⊎ Ω, in addition kΓ′ =
Γ0 ⊎ . . . ⊎ Γp and H = [Γi ⇒ ∆i]

n
i=2 |H, and suppose D2 ends with

Π0 ⇒ |H Π1 ⇒ lψ1 |H · · ·Πq ⇒ lψq|H
(□l,q),

Θ,□Π′ ⇒ □ψ1, . . . ,□ψq,Θ|H

where Π1 = Θ⊎□Π′ and Σ1 = [□ψ1]⊎. . .⊎[□ψp]⊎Θ, in addition lΠ′ = Π0⊎
. . .⊎Πq and H = [Πj ⇒ Σj ]

m
j=2 |H. Then, applying the rule (□kl,r11p+s11q

),

we obtain the required HLK(A)
r
-derivation

r11 lΓ0, s11kΠ0 ⇒ |G {lΓi ⇒ klφi | G}
r11p
i=1 · · · {kΠj ⇒ klψj | G}

s11q
j=1

r11Ω, s11Θ, r11□Γ′, s11□Π′ ⇒
r11□φ1, . . . , r11□φp, s11□ψ1, . . . , s11□ψq, r11Ω, s11Θ | G

where,
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G = [ri1Γi, si1Π1 ⇒ ri1∆i, si1Σ1]ni=2| · · ·
|[rimΓi, simΠm ⇒ rim∆i, simΣm]ni=2 |H

and the premises are all HLK(A)
r
-derivable using the induction hypothe-

sis. For example,

r11 lΓ0, s11kΠ0 ⇒ |[ri1Γi, si1Π1 ⇒ ri1∆i, si1Σ1]ni=2| · · ·
|[rimΓi, simΠm ⇒ rim∆i, simΣm]ni=2|H

is derived as follows using the induction hypothesis (note that rij , sij ∈
N ∪ {0}):

Γ0 ⇒ | [Γi ⇒ ∆i]
n
i=2 |H Π0 ⇒ | [Πj ⇒ Σj ]

m
j=2 |H

r11 lΓ0, s11kΠ0 ⇒ |[ri1Γi, si1Π1 ⇒ ri1∆i, si1Σ1]ni=2| · · ·
|[rimΓi, simΠm ⇒ rim∆i, simΣm]ni=2|H

Theorem 4.5. HLK(A) admits cut-elimination.

Proof: To establish cut-elimination for HLK(A), it suffices to prove that
an uppermost application of (Cut) in a HLK(A)-derivation can be elimi-
nated; that is, we show that cutfree HLK(A)-derivations of the premises of
an instance of (Cut) can be transformed into a cut-free HLK(A)-derivation
of the conclusion. Observe first that the rule (□n) is HLK(A)

r
-derivable

using (□k,n) with k = n, φ1 = · · · = φn = φ and Γ1 = . . . = Γn =
Γ. Hence, the proof of Lemma 4.4 shows that any cut-free HLK(A)-
derivation can be transformed algorithmically into a HLK(A)

r
-derivation.

We prove (constructively) that the following rule called “cancellation” rule
is HLK(A)

r
-admissible:

[Γi, φi ⇒ φi,∆i]
n
i=1 |H (CAN).

[Γi ⇒ ∆i]
n
i=1 |H

Suppose then that there are cut-free HLK(A)-derivations of the premises
Γ, φ ⇒ ∆ |H and Π ⇒ φ,Σ |H of an uppermost application of (Cut). By
(Mix), we obtain a cut-free HLK(A)- derivation of Γ,Π, φ ⇒ φ,∆,Σ |H
and hence a HLK(A)

r
-derivation of this sequent. By cancellation rule,

we obtain a HLK(A)
r
-derivation of Γ,Π ⇒ ∆,Σ |H, which also gives the

desired cut-free HLK(A)-derivation. We prove the admissibility of the can-
cellation rule by induction on the lexicographically ordered triple consisting
of the sum of the modal depth of the formulas φi, 1 ≤ i ≤ n, sum of the
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complexities of the formulas φi, 1 ≤ i ≤ n, and the height of the deriva-
tion of the premise. For the base case, suppose that the formulas φi for
all 1 ≤ i ≤ n are variables. If the premise is an instance of (AX), then
Γi, φi = φi,∆i for some 1 ≤ i ≤ n, i.e., Γi = ∆i and so [Γi ⇒ ∆i]

n
i=1 is an

instance of (AX). We observe that when the last rule applied is not (□k,n),
the claim follows immediately by applying the induction hypothesis and,
where necessary, the relevant rule. Let us consider some cases; suppose
that the last rule applied is (L→) as follows:

Γ′
1, φ1, χ⇒ ψ,φ1,∆1 | [Γi, φi ⇒ φi,∆i]

n
i=2 |H (L→),

ψ → χ,Γ′
1, φ1 ⇒ φ1,∆1 | [Γi, φi ⇒ φi,∆i]

n
i=2 |H

where Γ1 = ψ → χ,Γ′
1. Then, the height of the premise is reduced and so

by applying the induction hypothesis the conclusion is obtained as follows:

Γ′
1, φ1, χ⇒ ψ,φ1,∆1 | [Γi, φi ⇒ φi,∆i]

n
i=2 |H (IH)

Γ′
1, χ⇒ ψ,∆1 | [Γi ⇒ ∆i]

n
i=2 |H (L→).

ψ → χ,Γ′
1 ⇒ ∆1 | [Γi ⇒ ∆i]

n
i=2 |H

The cases where the last rule applied is (R →) or (Split) are very similar.
Suppose that the last rule applied is (L∧) as follows:

ψ,Γ′
1, φ1 ⇒ φ1,∆1 |χ,Γ′

1, φ1 ⇒ φ1,∆1 | [Γi, φi ⇒ φi,∆i]
n
i=2 |H (L∧),

ψ ∧ χ,Γ′
1, φ1 ⇒ φ1,∆1 | [Γi, φi ⇒ φi,∆i]

n
i=2 |H

where Γ1 = ψ ∧ χ,Γ′
1. Then, the height of the premise is reduced and so

by applying the induction hypothesis we have:

ψ,Γ′
1, φ1 ⇒ φ1,∆1 |χ,Γ′

1, φ1 ⇒ φ1,∆1 | [Γi, φi ⇒ φi,∆i]
n
i=2 |H (IH)

ψ,Γ′
1, φ1 ⇒ φ1,∆1 |χ,Γ′

1,⇒ ∆1 | [Γi ⇒ ∆i]
n
i=2 |H

Therefore, the sum of the complexities of the formulas φi is reduced, again
by applying the induction hypothesis the conclusion is obtained as follows:

ψ,Γ′
1, φ1 ⇒ φ1,∆1 |χ,Γ′

1,⇒ ∆1 | [Γi ⇒ ∆i]
n
i=2 |H (IH)

ψ,Γ′
1 ⇒ ∆1 |χ,Γ′

1,⇒ ∆1 | [Γi ⇒ ∆i]
n
i=2 |H (L∧).

ψ ∧ χ,Γ′
1 ⇒ ∆1 | [Γi ⇒ ∆i]

n
i=2 |H
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The cases where the last rule applied is (R∨) or (EC) are very similar.
Suppose now that the last rules applied is (□k,m) as follows:

Π0 ⇒ |H Π1 ⇒ kψ1 |H · · · Πm ⇒ kψm |H
(□k,m),

Σ,□Π, φ1 ⇒ φ1,□ψ1, . . . ,□ψm,Σ |H

where H = [Γi, φi ⇒ φi,∆i]
n
i=2 |H, and kΠ = Π0 ⊎ Π1 ⊎ . . . ⊎ Πm, in

addition k = k0 + k1 + . . . + km. Thus, the sum of the complexities of
the formulas φi is reduced, by applying the induction hypothesis we have
HLK(A)

r
-derivations of

Π0 ⇒ | [Γi ⇒ ∆i]
n
i=2 |H

Π1 ⇒ kψ1 | [Γi ⇒ ∆i]
n
i=2 |H

...

Πm ⇒ kψm | [Γi ⇒ ∆i]
n
i=2 |H

Then, by applying the rule (□k,m), we have a HLK(A)
r
-derivation of

Σ,□Π,⇒ □ψ1, . . . ,□ψm,Σ | [Γi ⇒ ∆i]
n
i=2 |H

For the inductive step, suppose that φi = ψ → χ for some 1 ≤ i ≤ n,
then we use the invertibility of (L→) and (R→) and apply the induction
hypothesis twice. If φi has the form ψ ∧ χ for some 1 ≤ i ≤ n, then the
conclusion is obtained as follows:

Γ1, ψ ∧ χ⇒ ψ ∧ χ,∆1 | [Γi, φi ⇒ φi,∆i]
n
i=2 |H

(L∧−1)
Γ1, ψ ⇒ ψ ∧ χ,∆1 |Γ1, χ⇒ ψ ∧ χ,∆1 | [Γi, φi ⇒ φi,∆i]

n
i=2 |H

(R∧−1) twice
Γ1, ψ ⇒ ψ,∆1 |Γ1, χ⇒ χ,∆1 | [Γi, φi ⇒ φi,∆i]

n
i=2 |H

(IH) twice
Γ1 ⇒ ∆1 |Γ1 ⇒ ∆1 | [Γi ⇒ ∆i]

n
i=2 |H

(EC)
Γ1 ⇒ ∆1 | [Γi ⇒ ∆i]

n
i=2 |H

Note that by applying the invertibility of the logical rules the height and
sum of the complexities of the formulas in the premise can increase, but
the sum of the complexities of the formulas φi is reduced. The cases where
φi for some 1 ≤ i ≤ n has the form ψ ∨ χ are very similar. Lastly, suppose
that φi = □χ for some 1 ≤ i ≤ n, and the derivation ends with

Π0, k0χ⇒ |H Π1, k1χ⇒ kχ |H {Πi, kiχ⇒ kψi |H}pi=2 (□k,p),
Σ,□Π,□χ⇒ □χ,□ψ2, . . . ,□ψn,Σ |H
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where H = [Γi, φi ⇒ φi,∆i]
n
i=2 |H, and kΠ = Π0 ⊎ Π1 ⊎ . . . ⊎ Πp, in

addition k = k0 +k1 + . . .+kp. In this case, the sum of the modal depth of
the formulas φi is reduced. By the induction hypothesis, ⊢HLK(A)r Π1 ⇒
(k − k1)χ |H. By the HLK(A)

r
-admissibility of the rule (mix), we have

HLK(A)
r
-derivations of

k0Π1, (k − k1)Π0, (k − k1)k0χ⇒ (k − k1)k0χ |H

kiΠ1, (k−k1)Πi, (k−k1)kiχ⇒ (k−k1)kiχ, (k−k1)kψi |H for i ∈ {2, . . . , p}.

So, by the induction hypothesis, we have HLK(A)
r
-derivations of

k0Π1, (k − k1)Π0 ⇒ |G

kiΠ1, (k − k1)Πi ⇒ (k − k1)kψi | G for i ∈ {2, . . . , p},

where G = [Γi ⇒ ∆i]
n
i=2 |H. Now by an application of (□((k−k1)k,n−1)),

we have a HLK(A)
r
-derivation ending with

k0Π1, (k − k1)Π0 ⇒ |G {kiΠ1, (k − k1)Πi ⇒ (k − k1)kψi | G}pi=2

Σ,□Π ⇒ □ψ2, . . . ,□ψn,Σ | G

where (k − k1)kΠ = (k0 + k2 + · · · + kp)(Π0 ⊎ Π1 ⊎ . . . ⊎ Πp).

We now turn our attention to showing that the axiomatic and hyperse-
quent presentations really characterize the same logics, writing
+{φ1, . . . , φn} as shorthand for φ1 + . . .+ φn.

Lemma 4.6.

(i) If ⊢HLK(A) Γ, φ+ ψ ⇒ ∆ |H, then ⊢HLK(A) Γ, φ, ψ ⇒ ∆ |H.

(ii) If ⊢HLK(A) Γ ⇒ ∆, φ+ ψ |H, then ⊢HLK(A) Γ ⇒ ∆, φ, ψ |H.

Proof: For (i), since ⊢HLK(A) φ,ψ ⇒ φ+ ψ |H, if ⊢HLK(A) Γ, φ+ ψ ⇒
∆ |H, then by (Cut), ⊢HLK(A) Γ, φ, ψ ⇒ ∆ |H. The case (ii) is similar.

Lemma 4.7. If ⊢HLK(A)⇒ I(H), then ⊢HLK(A) H.

Proof: Let H = Γ1 ⇒ ∆1 | . . . |Γn ⇒ ∆n. If

⊢HLK(A) (
∑

Γ1 →
∑

∆1) ∨ · · · ∨ (
∑

Γn →
∑

∆n),
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then by invertibility of the rules (R∨) and (R→),

⊢HLK(A) (
∑

Γ1 ⇒
∑

∆1) | · · · | (
∑

Γn ⇒
∑

∆n).

Hence, by Lemma 4.6, ⊢HLK(A) H.

Theorem 4.8. ⊢HLK(A) H iff ⊢LK(A) I(H).

Proof: For the left-to-right direction we proceed by induction on the
height of the derivation of H in HLK(A). If H is an instance of an axiom
of HLK(A), then it is easy to check that ⊢LK(A) I(H). For the inductive
step, suppose that H follows by some rule of HLK(A) from H1, . . . ,Hn.
By the induction hypothesis n times, we have ⊢LK(A) I(H1), . . . ,⊢LK(A)

I(Hn). For the non-modal rules of HLK(A) (see e.g. [18] for details), it
is easy to check that

⊢LK(A) I(H1) → (I(H2) → (· · · → (I(Hn) → I(H))) · · · )

and that hence, by (mp) n times, ⊢LK(A) I(H). For the modal rule,
suppose that ⊢LK(A) I(H) ∨ I(Γ ⇒ nφ). By Theorem 3.3, it is sufficient
to show that I(□Γ ⇒ n□φ |H) is valid in every LK(A)-algebra. Consider
a valuation v for such an algebra. Either v(I(H)) ≥ 0̄ and hence v(I(H)∨
I(□Γ ⇒ n□φ) ≥ 0̄ or v(I(Γ ⇒ nφ)) ≥ 0̄. If the latter, then I(v(I(Γ ⇒
nφ)) ≥ I(0̄)). But I(v(I(Γ ⇒ nφ))) = v(I(□Γ ⇒ n□φ)) so we are done.
For the right-to-left direction, we have (an easy exercise) that the axioms
of LK(A) are derivable in HLK(A). Moreover, (nec) corresponds to (□),
(adj) corresponds to (R∧), and (mp) can be derived from ⊢HLK(A)⇒ φ and
⊢HLK(A)⇒ φ → ψ, by using (Cut) twice with ⊢HLK(A) φ,φ → ψ ⇒ ψ.
Hence, if ⊢LK(A) I(H), then ⊢HLK(A)⇒ I(H), and so by Lemma 4.7,
⊢HLK(A)⇒ H.
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5. Concluding remarks

The paper is devoted to a proof-theoretic account of continuous modal
logics: many-valued modal logics with connectives interpreted locally by
continuous functions over sets of real numbers [10]. I have introduced
linear abelian modal logic LK(A), which is an extension of the abelian
modal logic K(A), where propositional connectives are interpreted using
lattice ordered group operations over the real numbers. I have provided
a hypersequent calculus admitting cut-elimination for LK(A). Moreover,
the correspondence between this calculus and the complete axiomatization
with respect to both appropriate algebras and linearly ordered algebras is
established.

I have only focused in this work on the extension of the sequent cal-
culus for the modal multiplicative fragment of K(A) to a hypersequent
calculus for the full logic. Clearly, there are many open questions still to
be addressed. The most pressing issue is to provide a suitable Kripke model
for LK(A) and prove the completeness theorem with respect to it. It seems
that adapting the Kripke semantics and prove completeness with respect to
the Kripke semantics is more tricky. Since the distributivity of box over the
operator “+”, i.e., □(φ + ψ) → □φ + □ψ is not derivable in the provided
hypersequent calculus, this formula should not be valid in Kripke models.
Therefore, it seems that we need some conditions on the accessibility rela-
tion in the Kripke models in which the formula □(φ ∨ ψ) → □φ ∨ □ψ is
valid, while the formula □(φ+ ψ) → □φ+ □ψ is not valid.
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