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Abstract

The variety DHMSH of dually hemimorphic semi-Heyting algebras was intro-

duced in 2011 by the second author as an expansion of semi-Heyting algebras by

a dual hemimorphism. In this paper, we focus on the variety DHMSH from a

logical point of view. The paper presents an extensive investigation of the logic

corresponding to the variety of dually hemimorphic semi-Heyting algebras and

of its axiomatic extensions, along with an equally extensive universal algebraic

study of their corresponding algebraic semantics. Firstly, we present a Hilbert-

style axiomatization of a new logic called “Dually hemimorphic semi-Heyting

logic” (DHMSH, for short), as an expansion of semi-intuitionistic logic SI (also

called SH) introduced by the first author by adding a weak negation (to be in-

terpreted as a dual hemimorphism). We then prove that it is implicative in the

sense of Rasiowa and that it is complete with respect to the variety DHMSH.

It is deduced that the logic DHMSH is algebraizable in the sense of Blok and

Pigozzi, with the variety DHMSH as its equivalent algebraic semantics and that

the lattice of axiomatic extensions of DHMSH is dually isomorphic to the lattice

of subvarieties of DHMSH. A new axiomatization for Moisil’s logic is also ob-

tained. Secondly, we characterize the axiomatic extensions of DHMSH in which

the “Deduction Theorem” holds. Thirdly, we present several new logics, extend-

ing the logic DHMSH, corresponding to several important subvarieties of the

variety DHMSH. These include logics corresponding to the varieties generated by

two-element, three-element and some four-element dually quasi-De Morgan semi-

Heyting algebras, as well as a new axiomatization for the 3-valued  Lukasiewicz
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logic. Surprisingly, many of these logics turn out to be connexive logics, only a

few of which are presented in this paper. Fourthly, we present axiomatizations

for two infinite sequences of logics namely, De Morgan Gödel logics and dually

pseudocomplemented Gödel logics. Fifthly, axiomatizations are also provided

for logics corresponding to many subvarieties of regular dually quasi-De Mor-

gan Stone semi-Heyting algebras, of regular De Morgan semi-Heyting algebras of

level 1, and of JI-distributive semi-Heyting algebras of level 1. We conclude the

paper with some open problems. Most of the logics considered in this paper are

discriminator logics in the sense that they correspond to discriminator varieties.

Some of them, just like the classical logic, are even primal in the sense that their

corresponding varieties are generated by primal algebras.
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9.1. De Morgan-Gödel logic and its extensions . . . . . . . . . . 606

9.2. Dually pseudocomplemented Gödel logic and its axiomatic
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1. Introduction

Semi-Heyting algebras were introduced by the second author1, during
1983–84, as a result of his research that went into [24] (still a preprint
at the time). Some of the early results were announced in [25]. The first
results on these algebras with their proofs, however, were published much
later in 2008 (see [28]).

An algebra L = ⟨L,∨,∧,→, 0, 1⟩ is a semi-Heyting algebra if the fol-
lowing conditions hold:

(SH1) ⟨L,∨,∧, 0, 1⟩ is a bounded lattice (with 0 and 1, respectively, as
the smallest and largest elements),

(SH2) x ∧ (x→ y) ≈ x ∧ y,

(SH3) x ∧ (y → z) ≈ x ∧ [(x ∧ y) → (x ∧ z)],

(SH4) x→ x ≈ 1.

A semi-Heyting algebra is a Heyting algebra if it satisfies the identity:

(H) (x ∧ y) → x ≈ 1.

We will denote the variety of semi-Heyting algebras by SH and that
of Heyting algebras by H. Semi-Heyting algebras share some important
properties with Heyting algebras; for instance, semi-Heyting algebras are
distributive and pseudocomplemented, with the pseudocomplement x∗ :=
x → 0; the congruences on them are determined by filters and the variety
of semi-Heyting algebras is arithmetical. For further results on SH, see
[1, 2, 3, 10, 11, 28]. (For algebras closely related to semi-Heyting algebras,
see [15, 13].)

It is well known that the variety of Heyting algebras is the equivalent
algebraic semantics (in the sense of Blok and Pigozzi) of the intuitionistic
propositional logic. In 2011, the first author of this paper defined, in [8],
a new logic called “semi-intuitionistic logic” (SI, for short, also called
SH) and showed, essentially, that the variety of semi-Heyting algebras is

1Parts of this paper were presented by the second author in invited talks at 8th Inter-
national Conference on Non-Classical Logics: Theory and Applications,  Lódź (2016), at
Maltsev Meeting, Novosibirsk (2017), and at Asubl (Algebra and Substructural Logics-
Take 6) workshop, Cagliari (2018).



A Logic for Dually Hemimorphic Semi-Heyting Algebras. . . 559

an algebraic semantics for this logic and that the intuitionistic logic is an
axiomatic extension of it. The axioms of this logic, however, were expressed
in a language that was not the same as that of semi-Heyting algebras. In
[14], a much simpler, but equivalent, set of axioms for SI (or SH), was
presented in the same language as that of semi-Heyting algebras. The logic
SI as presented in [14] will play a fundamental role in this paper.

In 1942, Moisil [21] (see also [20]) defined a logic called “Logique modale”
(LM), an expansion of intuitionistic propositional calculus by a De Morgan
negation. He also introduced Heyting algebras endowed with an involution,
in [20], as the algebraic models of the logic LM. These algebras were fur-
ther investigated by Monteiro [22] under the name of symmetric Heyting
algebras. In particular, he presented a proof of an algebraic complete-
ness theorem for Moisil’s calculus by showing that LM is complete for the
variety of symmetric Heyting algebras.

Independently of the previous work, motivated purely by (universal) al-
gebraic considerations, the second author defined and studied De Morgan
Heyting algebras, in [26], by expanding Heyting algebras by a De Morgan
operation. Earlier in 1985, he had also introduced (see [24]) the variety of
Heyting algebras with a dual pseudocomplementation. Also, in 1987, the
concepts of hemimorphism (without name), semi-De Morgan algebra and
(lower) quasi-De Morgan algebra were introduced in [27], unifying (and
generalizing) the notions of De Morgan operation and pseudocomplemen-
tation.

In 2011, motivated by the similarities of the results and proofs in [24]
and [26], he introduced in [29] a more general variety of algebras called “du-
ally hemimorphic semi-Heyting algebras”– an expansion of semi-Heyting
algebras by a dual hemimorphism, as a common generalization of De Mor-
gan Heyting algebras and dually psedocomplemented Heyting algebras.

Definition 1.1 ([29]). An algebra A = ⟨A,∨,∧,→,′ , 0, 1⟩ is a dually he-
mimorphic semi-Heyting algebra (or, semi-Heyting algebra with a dual
hemimorphism) if A satisfies the following conditions:

(D1): ⟨A,∨,∧,→, 0, 1⟩ is a semi-Heyting algebra,

(D2): 0′ ≈ 1,

(D3): 1′ ≈ 0,

(D4): (x ∧ y)′ ≈ x′ ∨ y′ (∧-De Morgan law).
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The unary operation ′ satisfying (D2)–(D4) is called a dual hemimor-
phism. The variety of dually hemimorphic semi-Heyting algebras will be
denoted by DHMSH.

It is useful to note here that if a ≤ b in a DHMSH-algebra, then a′ ≥ b′.

Several important subvarieties of the variety DHMSH, by adding the
duals of those given in [27], were introduced in [29], some of which will be
recalled in Section 5.

The following problem presents itself naturally.

PROBLEM A: Find a propositional logic in the language ⟨∨,∧,→,
∼,⊥,⊤⟩ with the following properties:

(1) It has the variety DHMSH of dually hemimorphic semi-Heyting al-
gebras as its equivalent algebraic semantics, and

(2) It has Moisil’s logic as one of its (axiomatic) extensions (up to equiv-
alence).

The subvariety DQDSH of DHMSH, consisting of dually quasi-De Mor-
gan semi-Heyting algebras (see item 10 of LIST 1 in Section 5 for defini-
tion), has been intensively investigated in [24, 26, 29, 30, 31, 32, 33, 34, 35,
36]. In Section 8 of [29] (see also [31] and [32]) the following problem was
raised:

PROBLEM B: Find Hilbert-type axiomatization for logics correspond-
ing to two-valued, three-valued and four-valued dually quasi-De Morgan
semi-Heyting algebras, viewed as logical matrices with {1} as the distin-
guished subset.

In this paper, we focus on the logical aspects of the variety DHMSH
of dually hemimorphic semi-Heyting algebras and many of its subvarieties.
The paper presents an extensive investigation of the logic corresponding
to the variety of dually hemimorphic semi-Heyting algebras and of its
axiomatic extensions, along with an equally extensive universal algebraic
study of their corresponding algebraic semantics.

Firstly, we give a solution to PROBLEM A. More specifically, we
present a Hilbert-style presentation of a new logic called “Dually hemi-
morphic semi-Heyting logic” (DHMSH, for short), as an expansion of
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semi-intuitionistic logic presented in [14]. We then prove that it is implica-
tive in the sense of Rasiowa and that it is complete with respect to the
variety DHMSH of dually hemimorphic semi-Heyting algebras. Using the
well-known results of Abstract Algebraic Logic we deduce that the logic
DHMSH is algebraizable in the sense of Blok and Pigozzi, with the va-
riety DHMSH as its equivalent algebraic semantics. It then follows that
the lattice of axiomatic extensions of DHMSH is dually isomorphic to
the lattice of subvarieties of DHMSH. As applications of these results, we
present several new logics, extending the logic DHMSH, corresponding to
some interesting subvarieties (studied in [29]) of the variety of hemimor-
phic semi-Heyting and Heyting algebras. A new axiomatization for Moisil’s
logic is also obtained. Secondly, we characterize the axiomatic extensions
of DHMSH in which the “Deduction Theorem” holds. This characteriza-
tion is further sharpened for the axiomatic extensions of the logic DQDSH.
Thirdly, we introduce many morl new logics, extending the logic DQDSH,
corresponding to important subvarieties of the variety DQDSH, including
some logics corresponding to the varieties generated by two-element, three-
element and some four-element dually quasi-De Morgan semi-Heyting al-
gebras, as well as a new axiomatization for the 3-valued  Lukasiewicz logic.
Many of these logics, to our surprise, turn out to be connexive logics, a
few of which are presented in this paper. Fourthly, we present axiom-
atizations for two infinite sequences of logics, namely De Morgan-Gödel
logics and dually pseudocomplemented Gödel logics. Fifthly, axiomatiza-
tions are also provided for logics corresponding to many subvarieties of
regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1, of
Regular De Morgan Semi-Heyting Algebras of level 1 and of JI-distributive
semi-Heyting algebras of level 1, studied in [29, 30, 31, 32, 33] (see also
[34, 35, 36]). Many of the logics considered in this paper are discriminator
logics in the sense that they correspond to discriminator varieties. Some
of them, just like the classical logic, are even primal in the sense that their
corresponding varieties are generated by primal algebras.

The paper is organized as follows: Section 2 contains definitions, no-
tation and some preliminary results that are needed later in the paper.
It includes the axiomatization for semi-intuitionistic logic as presented in
[14] which is crucial for the rest of the paper. In Section 3, we present
a Hilbert-style axiomatization for the new logic called “Dually hemimor-
phic semi-Heyting logic” (DHMSH, for short) by expanding the language
of semi-intuitionistic logic SI of [14] by a (weak) negation called dually



562 Juan M. Cornejo, Hanamantagouda P. Sankappanavar

hemimorphic negation and by adding new axioms and a new inference rule
to the semi-intitionistic logic SI. We then prove that the logic DHMSH
is an implicative logic with respect to the defined connective →H , where
x →H y := x → (x ∧ y). In Section 4, we prove the completeness theorem
for the logic DHMSH: The logic DHMSH is complete with respect to
the variety DHMSH of dually hemimorphic semi-Heyting algebras. In Sec-
tion 5, we deduce from Abstract Algebraic Logic that the logic DHMSH
is algebraizable, in the sense of Blok and Pigozzi, with the variety DHMSH
as its equivalent algebraic semantics, from which it follows that the lattice
of axiomatic extensions of DHMSH is dually isomorphic to the lattice of
subvarieties of DHMSH. These results enable us to present axiomatizations
of several extensions of DHMSH by translating the (equational) axioms
of various (known) subvarieties of DHMSH from [29, 30, 31, 32, 33] (see
sections 5 and 8-12) into (propositional) axioms of the corresponding ex-
tensions. We also show that Moisil’s “logique modale” LM is equivalent
to the logic DMH corresponding to the variety DMH of De Morgan Heyt-
ing algebras. In Section 6, we characterize the (axiomatic) extensions of
DHMSH in which the “Deduction Theorem” holds. This characterization
is further refined for the axiomatic extensions of the logic DQDSH.

Sections 7–12 deal with applications of the results of Section 5 together
with the algebraic results proved in [29, 30, 31, 32, 33, 34]. More specifically,
in Section 7, we present axiomatizations for some extensions of the logic
DQDSH whose equivalent algebraic semantics are subvarieties of DQDSH
generated by finitely many finite algebras, including two 2-valued logics
and twenty 3-valued logics and three 4-valued logics. Then we revisit the
3-valued  Lukasiewicz logic and give an alternative axiomatization for it.
In fact, we show that the logic corresponding to the 3-element De Morgan
Heyting algebra is equivalent to the 3-valued  Lukasiewicz logic. There-
after, we give axiomatizations for extensions of DQDSH corresponding
to the subvarieties of the variety DQDBSH generated by dually quasi-
De Morgan Boolean semi-Heyting algebras, completing the solution to
PROBLEM B mentioned earlier. We also give some extensions of the
logic DHMSH which fail to possess the disjunction property. Section 8
describes some connections to Connexive Logic by showing that some of
these 2-valued, 3-valued and 4-valued logics are, in fact, connexive log-
ics. Section 9 gives axiomatizations for De Morgan Gödel logic and dually
pseudocomplemented Gödel logic corresponding to the varieties generated
by the De Morgan Heyting chains and the dually pseudocomplemented
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Heyting chains, respectively. It also provides axiomatizations for the logics
corresponding to their subvarieties. In Section 10, we present axiomati-
zations for new logics corresponding to several subvarieties of the variety
RDQDStSH1 of regular dually quasi-De Morgan Stone semi-Heyting alge-
bras of level 1. Section 11 presents axiomatizations for logics corresponding
to a number of subvarieties of RDMSH1 of regular De Morgan Stone semi-
Heyting algebras of level 1, while Section 12 presents axiomatizations for
logics corresponding to many subvarieties of JI-distributive linear semi-
Heyting algebras of level 1. Section 13 concludes the paper with several
open problems for future research.

2. Preliminaries

A language L is a set of finitary operations (or connectives), each with a
fixed arity n ≥ 0. In this paper, we identify ⊥ and ⊤ with 0 and 1 re-
spectively and thus consider the languages ⟨∨,∧,→,∼,⊥,⊤⟩ and ⟨∨,∧,→
,′ , 0, 1⟩ as the same; however, we frequently use the former in the context
of logics and the latter in the context of algebras. For a countably infinite
set Var of propositional variables, the formulas of the language L are in-
ductively defined as usual. A logic (or, a deductive system) in the language
L is a pair L = ⟨L,⊢L⟩, where ⊢L is a substitution-invariant consequence
relation on FmL. We will present logics by means of their “Hilbert style”
axioms and inference rules.

The set of formulas FmL can be turned into an algebra in the usual
way. Throughout the paper, Γ and ∆ denote sets of formulas and lower
case Greek letters denote formulas. The homomorphisms from the formula
algebra FmL into an L-algebra (i.e, an algebra of type L) A are called
interpretations (or valuations) in A. The set of all such interpretations is
denoted by Hom(FmL,A). If h ∈ Hom(FmL,A) then the interpretation
of a formula α under h is its image hα ∈ A, while hΓ denotes the set
{hϕ | ϕ ∈ Γ}.

As mentioned earlier, Moisil presented in [21] (see also [20, 22]), a propo-
sitional logic called, “Logique modale”. We will refer to it as “LM”.

Moisil also introduced the variety of Heyting algebras endowed with an
involution, in [20], as the algebraic semantics for the logic LM. Monteiro
[22] investigated these algebras under the new name of symmetric Heyting
algebras. Among other things, he presented a proof of an algebraic com-
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pleteness theorem for Moisil’s calculus LM by showing that the logic LM
is complete with respect to the variety of symmetric Heyting algebras.

In the next section we will generalize Moisil’s logic to a new logic called
“dually hemimorphic semi-Heyting logic”. As a first step to achieve this
goal, we need to present a generalization of intutionistic logic called “Semi-
intutionistic logic” which was first introduced by the first author in [8]
in the language ⟨∨,∧,→,∼⟩. We will actually present below the more
streamlined version of semi-Intuitionistic logic SI in the usual language
⟨∨,∧,→,⊥,⊤⟩, as first presented in [14] with the intuitionistic logic as an
axiomatic extension. To facilitate this presentation, it will be convenient
to use α→H β as an abbreviation for α→ (α∧β) so that the axioms given
are easier to read. Moreover, the operation →H plays a crucial role in this
section and in the sections that follow. See Lemma 2.4 and Lemma 2.5 for
more information about →H .

Definition 2.1 ([14]). The semi-intuitionistic logic SI (also called SH) is
defined in the language
{∨,∧,→,⊥,⊤} and it has the following axioms and the inference rule:

AXIOMS:

(S1): α→H (α ∨ β),

(S2): β →H (α ∨ β),

(S3): (α→H γ) →H [(β →H γ) →H ((α ∨ β) →H γ)],

(S4): (α ∧ β) →H α,

(S5): (γ →H α) →H [(γ →H β) →H (γ →H (α ∧ β))],

(S6): ⊤,

(S7): ⊥ →H α,

(S8): ((α ∧ β) →H γ) →H (α→H (β →H γ)),

(S9): (α→H (β →H γ)) →H ((α ∧ β) →H γ),

(S10): (α→H β) →H ((β →H α) →H ((α→ γ) →H (β → γ))),

(S11): (α→H β) →H ((β →H α) →H ((γ → β) →H (γ → α))).
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RULE OF INFERENCE:

(SMP): From ϕ and ϕ→H γ, deduce γ (semi-Modus Ponens).

The following theorem and the lemma, proved in [14], are useful in later
sections.

Theorem 2.2 ([14], Completeness Theorem). For all Γ ∪ {α} ⊆ Fm

Γ ⊢SI α if and only if Γ |=SH α.

Lemma 2.3 ([14]). The following statements hold in the logic SI:
1. If Γ ⊢SI ψ then Γ ⊢SI α→H ψ,

2. ⊢SI α→H α,

3. ⊢SI (α ∧ β) →H β,

4. If ⊢SI α →H β then ⊢SI (α ∧ γ) →H (β ∧ γ) and ⊢SI (γ ∧ α) →H

(γ ∧ β),

5. ⊢SI (α→H β) →H [(β →H γ) →H (α→H γ)],

6. If Γ ⊢SI α and Γ ⊢SI β then Γ ⊢SI α ∧ β.

2.1. Some observations about semi-Heyting algebras,
in general, and → and →H , in particular

A key feature of semi-Heyting algebras is the following:

Every semi-Heyting algebra ⟨A,∨,∧,→, 0, 1⟩ gives rise, in a
natural way, to a Heyting algebra ⟨A,∨,∧,→H , 0, 1⟩, where
x→H y := x→ (x ∧ y), for x, y ∈ A (see [3]).

Lemma 2.4 ([3]). Let A = ⟨A,∨,∧,→, 0, 1⟩ be a semi-Heyting algebra and
let a, b, c ∈ A. Then,

1. a ∧ b ≤ c if and only if a ≤ b→ (b ∧ c),

2. (a→ b) ∧ (b→ a) = 1 if and only if (a→H b) ∧ (b→H a) = 1,

3. a = b if and only if (a→H b) ∧ (b→H a) = 1,

4. a→ b ≤ a→H b.

5. The algebra A := ⟨A,∨,∧,→H , 0, 1⟩ is a Heyting algebra.
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Thus, it follows from the preceding lemma that on the universe of every
semi-Heyting algebra, there is a Heyting algebra with →H as its implication
operation, and a→ b ≤ a→H b, for a, b ∈ A.

The order in a semi-Heyting algebra is determined by →H as the fol-
lowing lemma shows.

Lemma 2.5 ([8, Corollary 3.9]). Let A = ⟨A,∨,∧,→, 0, 1⟩ be a semi-
Heyting algebra and a, b ∈ A. Then, a→H b = 1 if and only if a ≤ b.

It is worth pointing out that the inference rule SMP implies the tradi-
tional Modus Ponens (MP) for the connective → as proved in [14, Lemma
4.3].

On the other hand, it is shown, by an example, in [14] (see pages
313–314) that Modus Ponens MP does not imply SMP.

Further relevance of the use of →H in the axioms of SH can be seen as
follows: Suppose we replace the axiom (S4) by the axiom

(S4’) (α ∧ β) → α.

and keep the rest of the axioms to form a new list, say, (LIST 2) of axioms.
Then consider the following algebra:

∼: 0 1 2 3
1 0 0 0

→: 0 1 2 3
0 1 1 1 1
1 0 1 1 0
2 0 0 1 1
3 0 1 0 1

∧: 0 1 2 3
0 0 0 0 0
1 0 1 3 3
2 0 2 1 1
3 0 3 2 2

∨: 0 1 2 3
0 0 1 1 1
1 1 1 1 1
2 1 1 1 1
3 1 1 1 1

This algebra satisfies ϕ ≈ 1 for all ϕ in the LIST 2 but its lattice reduct
is not distributive, since 2 ∧ (0 ∨ 1) ̸= (1 ∧ 2) ∨ (0 ∧ 2).
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3. The logic DHMSH: Axioms, Rules, and Rasiowa’s
Implicativeness

In this section we present a new propositional logic called “dually hemi-
morphic semi-Heyting logic” denoted by DHMSH and prove, as a first step 
toward a completeness theorem, that the logic DHMSH is implicative in 
the sense of Rasiowa with respect to the implication →H .

Definition 3.1. The dually hemimorphic semi-Heyting logic, DHMSH,
is defined in the language ⟨∨,∧,→,∼,⊥,⊤⟩ and it has the following axioms
and rules of inference:

AXIOMS:
(S1), (S2), . . . , (S11) of the logic SI, together with the following three
additional axioms:

(S12) ⊤ →H∼ ⊥,

(S13) ∼ ⊤ →H ⊥,

(S14) ∼ (α ∧ β) →H (∼ α ∨ ∼ β).

RULES OF INFERENCE:

(SMP) From ϕ and ϕ→H γ, deduce γ, (semi-Modus Ponens)

(SCP) From ϕ→H γ, deduce ∼ γ →H ∼ ϕ. (semi-Contraposition)

Since the axioms and the inference rule of the logic SI are included in
the logic DHMSH, the following result is immediate.

Theorem 3.2. Let Γ ∪ {α} ⊆ Fm. If Γ ⊢SI α then Γ ⊢DHMSH α.

The following lemma is needed later.

Lemma 3.3. Let Γ ∪ {α, β, γ, ψ} ⊆ Fm. The following statements hold in
the logic DHMSH:

1. If Γ ⊢DHMSH ψ, then Γ ⊢DHMSH α→H ψ,

2. ⊢DHMSH α→H α,

3. ⊢DHMSH (α ∧ β) →H β,

4. Γ ⊢DHMSH (α→H β) →H [(β →H γ) →H (α→H γ)],
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5. Γ ⊢DHMSH α ∧ β if and only if Γ ⊢DHMSH α and Γ ⊢DHMSH β,

6. If Γ ⊢DHMSH α →H β, then Γ ⊢DHMSH (α ∧ γ) →H (β ∧ γ) and
Γ ⊢DHMSH (γ ∧ α) →H (γ ∧ β).

Proof: Items (1), (2), (3) and (4) follow from Theorem 3.2 and items (1),
(2), (3) and (5) of Lemma 2.3, respectively. We have, by Theorem 3.2 and
Lemma 2.3 (6), that if Γ ⊢DMSH α and Γ ⊢DHMSH β then Γ ⊢DHMSH
α ∧ β. The other half of the item (5) follows easily from axiom (S4), item
(3) and (SMP). Finally, Item (6) follows from Lemma 2.3 (4).

Lemma 3.4. Let Γ ∪ {α, β, γ} ⊆ Fm.

1. If Γ ⊢DHMSH α →H β and Γ ⊢DHMSH β →H γ then Γ ⊢DHMSH
α→H γ.

2. Γ, β →H α ⊢DHMSH ∼ α→H ∼ β.

3. If Γ ⊢DHMSH α→H β, then
Γ ⊢DHMSH (α∨γ) →H (β∨γ) and Γ ⊢DHMSH (γ∨α) →H (γ∨β).

4. Γ ⊢DHMSH (∼ α ∨ ∼ β) →H ∼ (α ∧ β).

Proof:

1. This follows from 3.3 (4), using (SMP).

2. This is immediate from (SCP).

3. (a) Γ ⊢DHMSH α→H β by hypothesis,

(b) Γ ⊢DHMSH β →H (β ∨ γ) by (S1),

(c) Γ ⊢DHMSH α→H (β ∨ γ) by (1) in (3a) and (3b),

(d) Γ ⊢DHMSH γ →H (β ∨ γ) by (S2),

(e) Γ ⊢DHMSH (α→H (β∨γ)) →H [(γ →H (β∨γ)) →H ((α∨γ) →H

(β ∨ γ))] by (S3),

(f) Γ ⊢DHMSH (γ →H (β ∨ γ)) →H ((α ∨ γ) →H (β ∨ γ)) by (SMP)
in (3c) and (3e),

(g) Γ ⊢DHMSH (α ∨ γ) →H (β ∨ γ) by (SMP) in (3d) and (3f),

(h) Γ ⊢DHMSH γ →H (γ ∨ β) by (S1),

(i) Γ ⊢DHMSH β →H (γ ∨ β) by (S2),
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(j) Γ ⊢DHMSH α→H (γ ∨ β) by (1) and (SMP) in (3a) and (3i),

(k) Γ ⊢DHMSH (γ →H (γ∨β)) →H [(α→H (γ∨β)) →H ((γ∨α) →H

(γ ∨ β))] by (S3),

(l) Γ ⊢DHMSH (α→H (γ ∨ β)) →H ((γ ∨α) →H (γ ∨ β)) by (SMP)
in (3h) and (3k),

(m) Γ ⊢DHMSH (γ ∨ α) →H (γ ∨ β) by (SMP) in (3j) and (3l).

4. (a) Γ ⊢DHMSH (α ∧ β) →H α by axiom (S4),

(b) Γ ⊢DHMSH ∼ α→H ∼ (α ∧ β) by (SCP),

(c) Γ ⊢DHMSH (α ∧ β) →H β by (3.3) and (3),

(d) Γ ⊢DHMSH ∼ β →H ∼ (α ∧ β) by (SCP),

(e) Γ ⊢DHMSH (∼ α →H ∼ (α ∧ β)) →H [(∼ β →H ∼ (α ∧ β)) →H

(( ∼ α∨ ∼ β) →H ∼ (α ∧ β))] by axiom (S3),

(f) Γ ⊢DHMSH ( ∼ β →H ∼ (α ∧ β)) →H (( ∼ α∨ ∼ β) →H ∼
(α ∧ β)) by (SMP) in (4b), (4e),

(g) Γ ⊢DHMSH (∼ α∨ ∼ β) →H ∼ (α ∧ β) by (SMP) in (4d) and
(4f).

proving the lemma.

3.1. DHMSH as an implicative logic in the sense of Rasiowa

In 1974, Rasiowa ([23, page 179]) introduced an important class of logics
called “standard systems of implicative extensional propositional calculus”
and associated a class of algebras with each of them, by a generalization
of the classical Lindenbaum-Tarski process. We will refer to these logics as
“implicative logics in the sense of Rasiowa” (“implicative logics”, for short).
These logics have played a pivotal role in the development of Abstract
Algebraic Logic. We now recall the definition of implicative logics. We
follow Font [16].

Definition 3.5 ([23, 16]). Let L be a logic in a language L that includes
a binary connective →, either primitive or defined by a term in exactly two



570 Juan M. Cornejo, Hanamantagouda P. Sankappanavar

variables. Then L is called an implicative logic with respect to the binary
connective →, if the following conditions are satisfied:

(IL1) ⊢L α→ α,

(IL2) α→ β, β → γ ⊢L α→ γ,

(IL3) For each symbol f ∈ L of arity n ≥ 1,{
α1 → β1, . . . , αn → βn,
β1 → α1, . . . , βn → αn

}
⊢L f(α1, . . . , αn) → f(β1, . . . , βn),

(IL4) α, α→ β ⊢L β,

(IL5) α ⊢L β → α.

The following lemma was proved in [14, Lemma 4.6].

Lemma 3.6 ([14, Lemma 4.6]). The logic SI is implicative with respect to
the connective →H .

The following theorem follows from Theorem 3.2, Lemma 3.4 (2) and
Lemma 3.6.

Theorem 3.7. The logic DHMSH is implicative with respect to the con-
nective →H .

4. Completeness of DHMSH

Let L denote the language ⟨∨,∧,→,∼,⊥,⊤⟩. Identities in L are ordered
pairs ⟨α, β⟩ of L-formulas that will be written in the form α ≈ β. An
interpretation h in A satisfies an identity α ≈ β if hα = hβ. We denote
this satisfaction relation by the notation: A |=h α ≈ β. An algebra A
satisfies the equation α ≈ β if all the interpretations in A satisfy it; in
symbols,

A |= α ≈ β if and only if A |=h α ≈ β, for all h ∈ Hom(FmL,A).

A class K of algebras satisfies the identity α ≈ β when all the algebras in
K satisfy it; i.e.

K |= α ≈ β if and only if A |= α ≈ β, for all A ∈ K.
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If x̄ is a sequence of variables and h is an interpretation in A, then we
write ā for h(x̄). For a class K of L-algebras, we define the relation |=K that
holds between a set ∆ of identities and a single identity α ≈ β as follows:

∆ |=K α ≈ β

if and only if

for every A ∈ K and every interpretation ā of the variables of
∆ ∪ {α ≈ β} in A, we have,

if ϕA(ā) = ψA(ā), for every ϕ ≈ ψ ∈ ∆, then αA(ā) = βA(ā).

In this case, we say that α ≈ β is a K-consequence of ∆. The relation
|=K is called the semantic equational consequence relation determined by K.

Our goal in this section is to prove that the logic DHMSH is com-
plete with respect to the variety DHMSH. For this we need the following
definition from [23].

Definition 4.1 ([23, Definition 6, page 181], [16, Definition 2.5]). Let L
be an implicative logic in the language L with an implication connective
→. An algebra A in the language L that has an element 1 is called an
L-algebra if A satisfies the following properties:

(LALG1) For all Γ ∪ {ϕ} ⊆ Fm and all h ∈ Hom(FmL,A), if Γ ⊢L ϕ and
hΓ ⊆ {1} then hϕ = 1,

(LALG2) For all a, b ∈ A, if a→ b = 1 and b→ a = 1 then a = b.

The class of L-algebras is denoted by Alg∗L.

We also need the following result from [14].

Theorem 4.2 ([14, Corollary 4.8]). Alg∗SI = SH.

Since DHMSH is an implicative logic with respect to the binary con-
nective →H by Theorem 3.7, we obtain the following result, in view of [23,
Theorem 7.1, p. 222].

Theorem 4.3. The logic DHMSH is complete with respect to the class
Alg∗DHMSH. In other words,

for all Γ ∪ {ϕ} ⊆ Fm, Γ ⊢DHMSH ϕ if and only if Γ |=Alg∗(DHMSH) ϕ.
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As a last step to complete the proof of algebraic completeness of the
logic DHMSH, we need to prove that Alg∗DHMSH = DHMSH.

Lemma 4.4. DHMSH = Alg∗DHMSH.

Proof: First, we wish to prove that DHMSH ⊆ Alg∗DHMSH. Let A ∈
DHMSH, Γ ∪ {ϕ} ⊆ Fm and h ∈ Hom(FmL,A) such that Γ ⊢DHMSH ϕ
and hΓ ⊆ {1}. We need to verify that hϕ = 1.

We will proceed by induction on the length of the proof of Γ ⊢DHMSH ϕ.

• Assume that ϕ is an axiom.

If ϕ is one of the axioms (S1) to (S11) then ⊢SI ϕ. Hence, by theorem
2.2, |=DHMSH ϕ and so, h(ϕ) = ⊤.

If ϕ is the axiom (S12) then, using (D2), we have h(ϕ) = h(⊤ →H ∼
⊥) = 1 →H 0′ = 1.

If ϕ is the axiom (S13) then, using (D3), we get that h(ϕ) = h(∼
⊤ →H ⊥) = 0 →H 0 = 1.

If ϕ is the axiom (S14) then, using (D4), we obtain that
h(ϕ) = h(∼ (α ∧ β) →H ( ∼ α∨ ∼ β)) = (h(α) ∧ h(β))′ →H (h(α)′ ∨
h(β)′) = (h(α) ∧ h(β))′ →H (h(α) ∧ h(β))′ = 1.

• If ϕ ∈ Γ then h(ϕ) = ⊤ by hypothesis

• Assume now that Γ ⊢L ϕ is obtained from an application of (SMP).
Then there exist a formula ψ such that Γ ⊢L ψ and Γ ⊢L ψ →H ϕ.
By induction, h(ψ) = 1 and h(ψ →H ϕ) = 1. Then 1 = h(ψ) →H

h(ϕ) = 1 →H h(ϕ) = h(ϕ).

• Assume that Γ ⊢L ϕ is the result of an application of the rule (SCP).
Then for α, β ∈ Fm, ϕ =∼ β →H∼ α and Γ ⊢L α →H β. By
induction, 1 = h(α →H β) = h(α) →H h(β) and, consequently
h(α) ≤ h(β). Then, using condition (D4), h(β)′ ≤ h(α)′. Hence
h(β)′ →H h(α)′ = 1. Therefore, h(ϕ) = h(∼ β →H ∼ α) =
h(β)′ →H h(α)′ = 1.

Hence, the induction is complete and so, we concludes that A satisfies
(LALG1). It is easy to see that the condition (LALG2) also holds, implying
A ∈ Alg∗DHMSH.
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Next, we prove the other inclusion. Let A = ⟨A,∨,∧,→,′ , 0, 1⟩ ∈
Alg∗DHMSH. Notice that ⟨A,∨,∧,→, 0, 1⟩ ∈ Alg∗SI. By Theorem 4.2,
⟨A,∨,∧,→, 0, 1⟩ ∈ SH. Now, it only remains to show that A satisfies the
conditions (D2) to (D4).

In view of axiom (S12) and (LALG1), we have that A |= 1 →H 0′ ≈ 1.
Using (LALG1) and Lemma 3.3 (1), we get A |= 0′ →H 1 ≈ 1. Then by
(LALG2), A |= 1 ≈ 0′.

In view of axioms (S7) and (S13), together with (LALG1), we have that
A |= 0 →H 1′ ≈ 1 and A |= 1′ →H 0 ≈ 1. Then by (LALG2), A |= 1′ ≈ 0.

By Lemma 3.4 (4) and the condition (LALG1), A satisfies the identity
(x′ ∨ y′) →H (x ∧ y)′ ≈ 1. Also, In view of axiom (S14), and (LALG1), A
satisfies the identity (x ∧ y)′ →H (x′ ∨ y′) ≈ 1.

Applying (LALG2), the algebra satisfies (D4). Consequently A ∈
DHMSH.

We are now ready to present the completeness theorem for the logic
DHMSH.

Theorem 4.5. The logic DHMSH is complete with respect to the variety
DHMSH.

Proof: From Lemma 4.4 we have Alg∗DHMSH = DHMSH. The con-
clusion follows from Theorem 4.3.

5. Equivalent algebraic semantics and axiomatic
extensions of the logic DHMSH

Our goal in this section is to improve Theorem 4.5 by proving that the
logic DHMSH is algebraizable and DHMSH is an equivalent algebraic
semantics of the logic DHMSH.

Here we first recall some relevant notions and results from Abstract
Algebraic Logic (see [6, Section 2.1], [17], or [16]).

Definition 5.1 ([6, Definition 2.2], [16, Definition 3.4]). Let ⟨L,⊢L⟩ be a
logic (i.e., deductive system) and K a class of L-algebras. K is called an
“algebraic semantics” for ⟨L,⊢L⟩ if ⊢L can be interpreted in |=K in the
following sense:
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There exists a finite set δi(p) ≈ ϵi(p), for i < n, of identities with a
single variable p such that, for all Γ ∪ ϕ ⊆ Fm and each j < n,

(A) Γ ⊢L ϕ

if and only if

{δi[ψ/p] ≈ ϵi[ψ/p] : i < n, ψ ∈ Γ} |=K δj [ϕ/p] ≈ ϵj [ϕ/p],

where δ[ψ/p] denotes the formula obtained by the substitution of ψ at every
occurrences of p in δ. The identities δi ≈ ϵi, for i < n, are called “defining
identities” for ⟨L,⊢L⟩ and K.

In what follows, we will use “Γ =||=K ∆” as an abbreviation for “Γ |=K ∆
and ∆ |=K Γ.” Also, δ(∆(ϕ, ψ)) denotes the formula obtained by the
substitution of the formula ∆(ϕ, ψ) at every occurrence of p in δ(p).

Definition 5.2 ([6, Definition 2.8], [16, Definition 3.11]). Let ⟨L,⊢L⟩ be
a logic and K an algebraic semantics for ⟨L,⊢L⟩ with defining identities
δi = ϵi, for i < n.

K is said to be “equivalent to” ⟨L,⊢L⟩ if there exists a finite set ∆j(p, q),
for j < m, of formulas with two variables p, q such that

for every identity ϕ ≈ ψ, for i < n, and for j < m,

(E) ϕ ≈ ψ =||=K {δi(∆j(ϕ, ψ)) ≈ ϵi(∆j(ϕ, ψ)) : i < n, j < m}.

The set ∆j(p, q), j < m, of formulas with two variables, satisfying (E) is
called a set of “equivalence formulas” for ⟨L,⊢L⟩ and K. A logic L is said to
be “algebraizable” if and only if it has an equivalent algebraic semantics K.

The following theorem, proved in [6], is crucial in what follows.

Theorem 5.3 ([6], [16, Proposition 3.15]). Every implicative logic L is
algebraizable with respect to the class Alg∗L and the algebraizability is wit-
nessed by the defining identity p ≈ p → p and the equivalence formulas
∆ = {p→ q, q → p}.

As an immediate consequence of Theorem 5.3, Theorem 3.7 and Theo-
rem 4.5, we obtain the following crucial result.

Corollary 5.4. The logic DHMSH is algebraizable, and the variety
DHMSH is the equivalent algebraic semantics for DHMSH with the defin-
ing identity p ≈ p→H p (equivalently, p ≈ 1) and the equivalence formulas
∆ = {p→H q, q →H p}.
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Also, we just mention, in passing, the following fact which follows from
Theorem 5.3, Lemma 3.6 and Theorem 4.2 about the semi-intuitionistic
logic SH.

Corollary 5.5. The logic SI is algebraizable, and the variety SH is the
equivalent algebraic semantics for SI with the defining identity p ≈ p→H p
and the equivalence formulas ∆ = {p→H q, q →H p}.

5.1. Axiomatic extensions of DHMSH

A logic L′ is an axiomatic extension of L if L′ is obtained by adjoining new
axioms but keeping the rules of inference the same as in L.

In the sequel, we sometimes use the term “extension” for “axiomatic
extension”. Let Ext(L) denote the lattice of axiomatic extensions of the
logic L and LV(K) denote the lattice of subvarieties of the variety K of
algebras.

The following theorem, due to Blok and Pigozzi, is one of the hallmark
accomplishments of Abstract Algebraic Logic.

Theorem 5.6 ([16, Theorem 3.40]). Let L be an algebraizable logic with
the variety K as its equivalent algebraic semantics. Then Ext(L) is dually
isomorphic to LV(K).

The following theorem is a consequence of Theorem 5.6, Theorem 4.5
and Corollary 5.4.

Theorem 5.7 (Isomorphism Theorem for DHMSH). Ext(DHMSH) is
dually isomorphic to LV(DHMSH).

In a similar fashion, the following result is a consequence of Theorem
5.6, Theorem 2.2 and Corollary 5.5.

Theorem 5.8 (Isomorphism Theorem for SH). Ext(SH) is dually iso-
morphic to LV(SH).

The following theorem is an immediate consequence of Theorem 5.7 and
plays an important role in the rest of the paper. Let Mod(E) := {A ∈
DHMSH : A |= δ ≈ 1, for every δ ∈ E}.
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Theorem 5.9. Let E be an axiomatic extension of the logic DHMSH.
Then:

(a) E is algebraizable with the same equivalence formulas and defining
equations as those of the logic DHMSH.

(b) Mod(E) is the equivalent algebraic semantics for E.

Note that Theorem 5.8 justifies the use of the phrase “the logic corre-
sponding to the subvariety V” of DHMSH.

We now give Hilbert-style axiomatizations for several important exten-
sions of the logic DHMSH. To facilitate the presentation of the extensions
of the logic DHMSH, we first list several important subvarieties of the
variety DHMSH of dually hemimorphic semi-Heyting algebras that were
introduced (or implicit) in [29].

In the later sections of the paper, we give various applications of the
results proved above and the algebraic results proved in [29, 30, 31, 32, 33,
34] (see also [35, 36]).

LIST 1: SOME IMPORTANT SUBVARIETIES OF THE VARI-
ETY DHMSH

1. DHMH: Dually hemimorphic Heyting algebras are DHMSH-algebras
satisfying the identity:

(H): (x ∧ y) → x ≈ 1.

2. OCKSH: Ockham semi-Heyting algebras are DHMSH-algebras satis-
fying the identity:

(E1): (x ∨ y)′ ≈ x′ ∧ y′.

3. OCKH: Ockham Heyting algebras are OCKSH-algebras satisfying the
identity (H).

4. DmsSH: Dually ms semi-Heyting algebras are OCKSH-algebras sat-
isfying the identity:

(E2): x′′ ≤ x.

5. DmsH: Dually ms Heyting algebras are DmsSH-algebras satisfying
the identity (H).
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6. DMSH: De Morgan semi-Heyting algebras are OCKSH-algebras (or
DHMSH-algebras) satisfying the identity

(E3): x′′ ≈ x.

7. DMH: De Morgan Heyting algebras are DMSH-algebras satisfying
the identity (H).

8. DSDSH: Dually semi-De Morgan semi-Heyting algebras ([27]) are
DHMSH-algebras satisfying the identities:

(E4): (x ∨ y)′′ ≈ x′′ ∨ y′′,
(E5): x′′′ ≈ x′.

9. DSDH: Dually semi-De Morgan Heyting algebras are DSDSH-algebras
satisfying the identity (H).

10. DQDSH: Dually quasi-De Morgan semi-Heyting algebras ([27]) are
DSDSH-algebras satisfying the identity (E2).

11. DQDH: Dually quasi-De Morgan Heyting algebras are DQDSH-alge-
bras satisfying the identity (H).

12. DPCSH: Dually pseudocomplemented semi-Heyting algebras are
DQDSH-algebras satisfying the identity:

(E6): x ∨ x′ ≈ 1.

13. DPCH: Dually pseudocomplemented Heyting algebras are DPCSH-
algebras satisfying the identity (H).

14. BDQDSH: Blended dually quasi-De Morgan semi-Heyting algebras
are DQDSH-algebras satisfying the identity:

(E7): (x ∨ x∗)′ ≈ x′ ∧ x∗′. (Blended ∨-De Morgan law)

15. BDQDH: Blended dually quasi-De Morgan Heyting algebras are
BDQDSH-algebras satisfying the identity (H).

16. SBDQDSH: Strongly blended dually quasi-De Morgan semi-Heyting
algebras are DQDSH-algebras satisfying the identity:

(E8): (x ∨ y∗)′ ≈ x′ ∧ y∗′. (Strongly blended ∨-De Morgan law)
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17. SBDQDH: Strongly blended dually quasi-De Morgan Heyting algebras
are SBDQDSH-algebras satisfying the identity (H).

18. DQDBSH: Dually quasi-De Morgan Boolean semi-Heyting algebras
are DQDSH-algebras satisfying the identity:

(E9): x ∨ x∗ ≈ 1.

19. DQDBH: dually quasi-De Morgan Boolean Heyting algebras are
DQDBSH-algebras satisfying the identity (H).

20. DQStSH: Dually quasi-Stone semi-Heyting algebras are DHMSH-
algebras satisfying the identities: (E2),

(E10): (x ∨ y′)′ ≈ x′ ∧ y′′, (weak ∨-De Morgan law)

(E11): x′ ∧ x′′ ≈ 0. (Dual Stone identity)

21. DQStH: Dually quasi-Stone Heyting algebras are DQStSH-algebras
satisfying the identity (H).

22. BDQStSH: Blended dually quasi-Stone semi-Heyting algebras are
DQStSH-algebras satisfying the identity (E7).

23. BDQStH: Blended dually quasi-Stone Heyting algebras are BDQStSH-
algebras satisfying the identity (H).

24. SBDQStSH: Strongly blended dually quasi-Stone semi-Heyting alge-
bras are DQStSH-algebras satisfying the identity (E8).

25. SBDQStH: Strongly blended dually quasi-Stone Heyting algebras are
SBDQStSH-algebras satisfying the identity (H).

26. DStSH: Dually Stone semi-Heyting algebras are DPCSH-algebras sat-
isfying the identity (E11).

27. DStH: Dually Stone Heyting algebras are DStSH-algebras satisfying
the identity (H).

28. DSCSH: Dually semi-complemented semi-Heyting algebras are
DHMSH-algebras satisfying the identity (E6).

29. DSCH: Dually semi-complemented Heyting algebras are DSCSH-
algebras satisfying the identity (H).
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30. DDPCSH: Dually demi-pseudocomplemented semi-Heyting algebras
are DSDSH-algebras satisfying the identity:

(E12): x′ ∨ x′′ ≈ 1.

31. DDPCH: Dually demi-pseudocomplemented Heyting algebras are
DDPCSH-algebras satisfying the identity (H) (see [27]).

32. DAPCSH: Dually almost pseudocomplemented semi-Heyting algebras
are
DDPCSH-algebras in which ′ satisfies the identity dual to (E9)
(see [27]).

33. DAPCH: Dually almost pseudocomplemented Heyting algebras are
DAPCSH-algebras in which ′ satisfies the identity (H).

Next, we present Hilbert-type axiomatizations for the (new) logics that
are extensions of DHMSH and that correspond to the subvarieties of
DHMSH mentioned in LIST 1. For the relationships of these logics
to the varieties in LIST 1, the reader is referred to Theorem 5.10 below.

LIST 2: SOME IMPORTANT EXTENSIONS OF DHMSH

1. DHMH: The dually hemimorphic Heyting logic is the extension of
DHMSH given by

(A1): (α ∧ β) → α.

2. OCKSH: The Ockham semi-Heyting logic is the extension of DHMSH
given by

(A2): ∼ (α ∨ β) →H (∼ α∧ ∼ β),

(A3): (∼ α∧ ∼ β) →H ∼ (α ∨ β).

3. OCKH: The Ockham Heyting logic is the extension of OCKSH given
by (A1).

4. DmsSH: The dually ms semi-Heyting logic is the extension of OCKSH
given by

(A4): ∼∼ α→H α.
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5. DmsH: The dually ms Heyting logic is the extension of DmsSH
given by (A1).

6. DMSH: The De Morgan semi-Heyting logic is the extension of
OCKSH given by (A4) and

(A5): α→H ∼∼ α.

7. DMH: The De Morgan Heyting logic is the extension of DMSH
given by (A1).

8. DSDSH: The dually semi-De Morgan semi-Heyting logic is the ex-
tension of DHMSH given by

(A6): ∼∼ (α ∨ β) →H (∼∼ α ∨ ∼∼ β),

(A7): (∼∼ α ∨ ∼∼ β) →H ∼∼ (α ∨ β),

(A8): ∼∼∼ α→H ∼ α,

(A9): ∼ α→H ∼∼∼ α.

9. DSDH: The dually semi-De Morgan Heyting logic is the extension
of DSDSH given by (A1).

10. DQDSH: The dually quasi-De Morgan semi-Heyting logic is the ex-
tension of DSDSH given by (A4).

11. DQDH: The dually quasi-De Morgan Heyting logic is the extension
of DQDSH given by (A1).

12. DPCSH: The dually pseudocomplemented semi-Heyting logic is the
extension of DQDSH given by

(A10): α ∨ ∼ α.

13. DPCH: The dually pseudocomplemented Heyting logic is the exten-
sion of DPCSH given by (A1).

14. BDQDSH: The blended dually quasi-De Morgan semi-Heyting logic
is the extension of DQDSH given by

(A11): ∼ (α ∨ (α→ ⊥)) →H (∼ α ∧ ∼ (α→ ⊥)),

(A12): (∼ α ∧ ∼ (α→ ⊥)) →H ∼ (α ∨ (α→ ⊥)).
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15. BDQDH: The blended dually quasi-De Morgan Heyting logic is the
extension of BDQDSH given by (A1).

16. SBDQDSH: The strongly blended quasi-De Morgan semi-Heyting
logic is the extension of DQDSH given by

(A13): ∼ (α ∨ (β → ⊥)) →H (∼ α ∧ ∼ (β → ⊥)),

(A14): (∼ α ∧ ∼ (β → ⊥)) →H ∼ (α ∨ (β → ⊥)).

17. SBDQDH: The strongly blended dually quasi-De Morgan Heyting
logic is the extension of SBDQDSH given by (A1).

18. DQDBSH: The dually quasi-De Morgan Boolean semi-Heyting logic
is the extension of DQDSH given by

(A15): α ∨ (α→ ⊥).

19. DQDBH : The dually quasi-De Morgan Boolean Heyting logic is the
extension of DQDBSH given by (A1).

20. DQStSH: The dually quasi-Stone semi-Heyting logic is the extension
of DHMSH given by (A4) and the following axioms:

(A16): ∼ (α ∨ ∼ β) →H (∼ α ∧ ∼∼ β),

(A17): (∼ α ∧ ∼∼ β) →H ∼ (α ∨ ∼ β),

(A18): (∼ α ∧ ∼∼ α) →H ⊥.

21. DQStH: The dually quasi-Stone Heyting logic is the extension of
DQStSH given by (A1).

22. BDQStSH: The blended dually quasi-Stone semi-Heyting logic is
the extension of DQDSH given by (A11), (A12).

23. BDQStH: The blended dually quasi-Stone Heyting logic is the ex-
tension of BDQStSH given by (A1).

24. SBDQStSH: The strongly blended dually quasi-Stone semi-Heyting
logic is the extension of DQDSH given by (A13), (A14).

25. SBDQStH: The strongly blended dually quasi-Stone Heyting logic
is the extension of SBDQStSH given by (A1).
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26. DStSH: The dually Stone semi-Heyting logic is the extension of
DPCSH given by (A18).

27. DStH: The dually Stone Heyting logic is the extension of DStSH
given by (A1).

28. DSCSH: The dually semi-complemented semi-Heyting logic is the
extension of DHMSH given by (A10).

29. DSCH: The dually semi-complemented Heyting logic is the extension
of DSCSH given by (A1).

30. DDPCSH: The dually demi-pseudocomplemented semi-Heyting logic
is the extension of DSDSH given by

(A19): ∼ α ∨ ∼∼ α.

31. DDPCH: The dually demi-pseudocomplemented Heyting logic is the
extension of DDPCSH given by (A1).

32. DAPCSH: The dually almost pseudocomplemented semi-Heyting logic
is the extension of DDPCSH given by

(A20): ∼∼ α→H α.

33. DAPCH: The dually almost pseudocomplemented Heyting logic is
the extension of DAPCSH given by (A1).

The following theorem which is immediate from Theorem 5.9 describes
the correspondence between the logics in LIST 2 and the varieties in
LIST 1.

Theorem 5.10. Let Vi be the variety of algebras mentioned in the i-th
item of LIST 1 and Vi be the logic appearing in the i-th item of LIST 2.
Then, the logic Vi corresponds to the variety Vi in the sense that Vi is its
equivalent algebraic semantics for Vi.

In Figure 1, we present a (partial) poset describing the mutual relations
among the varieties, whose names end with “SH”, mentioned in PART 1
above. The dual of this poset will show the relations among the logics,
whose names end with “SH”, presented in PART 2, T being the trivial
variety. Note that the links do not necessarily represent covers.
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T

V(2e) V(2̄e)

V(2e, 2̄e)

DStSH DQDBSH

DPCSH DMSH

SBDQDSH

SBDQStSH DAPCSH BDQDSH DmsSH

BDQStSH DDPCSH DQDSH

DQStSH DSDSH OCKSH

DSCSH

DHMSH

Figure 1. Partial poset of subvarieties of DHMSH
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Corollary 5.11. The (Moisil’s) logic LM is equivalent to the logic DMH.

Proof: We know from Moisil’s result (see Monteiro [22]) that LM corre-
sponds to DMH. Also, observe from Theorem 5.10 that the logic DMH
correspond to DMH as well.

We just note that there is an 8-element algebra (with heyting reduct)
to show that DPCSH ̸⊂ SBDQDSH.
Although there has been some investigation of the structre of the lattice
of subvarieties of certain subvarietie of the variety DPCSH, the following
problem is still open.

PROBLEM 1: Describe the structure of the lattice of subvarieties of
the variety BDQDSH.

Similar questions cane be raised about other varieties in the poset of
Figure 1, as well.

We now recall some universal algebraic notions (see, for example, [7])
useful in the sequel.

Definition 5.12. Let A be an algebra. An n-ary function f : An → A
is representable by a term if there is a term p such that f(a1, . . . , an) =
pA(a1, . . . , an), for a1, . . . , an ∈ A. A finite algebra A is primal if every
n-ary function on A, for every n ≥ 1, is representable by a term.
The discriminatior function on a set A is the function t : A3 → A defined by

t(a, b, c) :=

{
a, if a ̸= b

c, if a = b.

A ternary term t(x, y, z) representing the discriminator on A is called a
discriminator term for the algebra A. If a class K of algebras has a common
discriminator term t(x, y, z), then V(K) is called a discriminator variety. A
finite algebra A with a discriminator term is called quasiprimal. An algebra
A is semiprimal if

(1) A is quasiprimal,

(2) distinct nontrivial subalgebras of A are not isomorphic,

(3) no subalgebra of A has a proper automorphism.
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Definition 5.13. Let L be an algebraizable logic. We say that L is a
discriminator logic if its equivalent algebraic semantics is a discriminator
variety. Furthermore, L is a primal logic if its equivalent algebraic seman-
tics is a variety generated by a primal algebra. L is a quasiprimal logic if
its equivalent algebraic semantics is a variety generated by a quasiprimal
algebra. L is a semiprimal logic if its equivalent algebraic semantics is a
variety generated by a semiprimal algebra.

The classical logic is the first well-known example of a primal logic (as
the Boolean algebra 2 is a primal algebra).

Remark 5.14. Since RDQDStSH1 satisfies (B) (see Section 10), it follows
from Corollary 8.2 of [29] that the variety RDQDStSH1 is a discriminator
variety. Thus RDQDStSH1 is a discriminator logic. Many of the logics
considered in the rest of this paper are discriminator logics. We will point
them out as they appear.

We conclude this section by noting that the lattice of extensions of the
logic DMH is an interval of the lattice of extensions of DMSH, which, in
turn, is an interval in the lattice of extensions of DHMSH.

6. Deduction theorem in the extensions of the logic
DHMSH

In this section we first show that the “usual” form of the Deduction The-
orem” fails in the logic DHMSH, and then characterize those extensions
of DHMSH where it does hold.

A logic L is said to have the Deduction Property for the connective →
if the following statement holds:

Γ, α ⊢L β if and only if Γ ⊢L α→ β,

for all Γ ∪ {α, β} ⊆ Fm.
In the logic SI the Deduction Property for the conective →H is known

to hold [8, Theorem 3.18]. But, this property fails in the logic DHMSH,
as shown in the following remark.

Remark 6.1. First, we note, by Lemma 3.4 (2), that

ϕ→H ψ ⊢DHMSH ∼ ψ →H ∼ ϕ. (6.1)
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Consider the algebra Ldm
1 defined in the second paragraph after Figure 3 in

Section 7. Observe that Ldm
1 ̸|=DHMSH (x→H y) →H (y′ →H x′) ≈ 1 (by

taking x = 1 and y = a). Hence, DHMSH ̸|= (x→H y) →H (y′ →H x′) ≈ 1
and therefore, by Theorem 4.5,

̸⊢DHMSH (ϕ→H ψ) →H (∼ ψ →H ∼ ϕ).

Thus, the Deduction Property fails in DHMSH, in view of (6.1).

We now wish to characterize the extensions of DHMSH in which the
Deduction Property holds. For this, we need a preliminary lemma.

Lemma 6.2. Let E be an extension of the logic DHMSH such that

⊢E (α→H β) →H (∼ β →H ∼ α).

Then E satisfies the Deduction Property for the connective →H .

Proof: Assume that Γ ∪ {ϕ} ⊢E ψ. We shall prove Γ ⊢E ϕ →H ψ by
induction on the proof for ψ. By hypothesis,

⊢E (α→H β) →H (∼ β →H ∼ α). (6.2)

If ψ is an axiom of E or a formula in Γ, then Γ ⊢E ψ. By Lemma 3.3, part
(1) we have Γ ⊢E ϕ→H ψ.

Let us assume that Γ∪{ϕ} ⊢E ψ is the result of applying the rule (SMP).
Then we may assume that there is some formula α such that Γ∪ {ϕ} ⊢E α
and Γ ∪ {ϕ} ⊢E α→H ψ. So, by inductive hypothesis, we have,

1. Γ ⊢E ϕ→H α,

2. Γ ⊢E ϕ→H (α→H ψ),

3. Γ ⊢E ϕ→H ϕ by Lemma 3.3, part (2),

4. Γ ⊢E ϕ→H (ϕ ∧ α) by (S5) and SMP applied to 1 and 3,

5. Γ ⊢E (ϕ ∧ α) →H ψ by (S9) and SMP applied to 2,

6. Γ ⊢E ϕ→H ψ by Lemma 3.3 (4) and SMP applied to 4 and 5.

Assume that Γ ∪ {ϕ} ⊢E ψ is the result of applying the rule (SCP). Hence
ψ = ∼ β →H∼ α and Γ ∪ {ϕ} ⊢E α→H β. By induction we have that
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1. Γ ⊢E ϕ→H (α→H β),

2. Γ ⊢E (α→H β) →H (∼ β →H ∼ α) by (6.2),

3. Γ ⊢E ϕ→H (∼ β →H ∼ α) by 3.3 (4) and SMP applied to 1 and 2.

For the other implication, we assume that Γ ⊢E ϕ →H ψ. Then Γ ∪
{ϕ} ⊢E ϕ→H ψ. Since Γ∪ {ϕ} ⊢E ϕ, we have Γ∪ {ϕ} ⊢E ψ by (SMP).

Theorem 6.3. The Deduction Property holds in an extension E of the
logic DHMSH for the connective →H if and only if E ⊢ (α →H β) →H

(∼ β →H∼ α).

Proof: Let us assume that the Deduction Property holds in E for the
conective →H . Note that α →H β ⊢E α →H β and α →H β ⊢E ∼ β →H

∼ α by (SCP). Hence ⊢E (α →H β) →H (∼ β →H ∼ α) by Deduction
Property, or equivalently, E ⊢DHMSH (α→H β) →H (∼ β →H∼ α).

For the converse, let us assume that E ⊢ (α →H β) →H (∼ β →H

∼ α). By Lemma 6.2, the Deduction Property holds in E for the conec-
tive →H .

Recall that semi-Heyting algebras are pseudocomplemented with x∗ :=
x→ 0 as the pseudocomplement of x. A semi-Heyting algebra L is a Stone
semi-Heyting algebra if L satisfies the Stone identity: x∗ ∨ x∗∗ ≈ 1. Let
StSH denote the variety of Stone semi-Heyting algebras. Recall also that if
A is a semi-Heyting algebra, then ⟨A,∨,∧,→H 0, 1⟩ is a Heyting algebra.

Lemma 6.4. Let A ∈ DHMSH such that A |=(x→H y)→H (y′→H x
′)≈1.

Then

1. A |= x ∧ x′ ≈ 0,

2. A |= x∗ ≈ x′,

3. A |= x∗ ∨ x∗∗ ≈ 1.

Proof: Let a ∈ A.

1. Since a →H (a′ →H 0) = (1 →H a) →H (a′ →H 0) = (1 →H a) →H

(a′ →H 1′) = 1 in view of hypothesis, we have that a ∧ (a′ →H 0) =
a ∧ (a→H (a′ →H 0)) = a ∧ 1 = a. Hence

a ∧ (a′ →H 0) = a. (6.3)
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Then, a ∧ a′ (6.3)
= a ∧ (a′ →H 0) ∧ a′ = a ∧ (a′ → 0) ∧ a′ = a ∧ a′ ∧ 0

= 0, proving (1).

2. Observe that a∗ →H a′ = a∗ →H (1 →H a′) = (a→H 0) →H (1 →H

a′) = (a→H 0) →H (0′ →H a′) = 1 by hypothesis. Hence

A |= x∗ ≤ x′. (6.4)

Next, a′∧a∗ = a′∧ (a→ 0) = a′∧ ((a′∧a) → (a′∧0))
(1)
= a′∧ (0 → 0)

= a′. Hence A |= x′ ≤ x∗. Now, using (6.4) we conclude that a′ = a∗.

3. a∗ ∨ a∗∗ (2)
= a′ ∨ a′′ (ED4)

= (a ∧ a′)′ (1)
= 0′ = 1,

proving the lemma.

Lemma 6.5. Let A ∈ DHMSH. Then the following conditions are equiva-
lent in the algebra A.

1. (x→H y) →H (y′ →H x′) ≈ 1,

2. x∗ ≈ x′.

Proof: Let a, b ∈ A. Observe that (1) implies (2) from Lemma 6.4. For
the converse, suppose A satisfies the identity (2). Then, using (SH3) and
the fact that →H is a Heyting implication, we have that (a →H b) →H

(b′ →H a′) = (a →H b) →H (b∗ →H a∗) = (b∗ ∧ (a →H b)) →H a∗ =
(b∗ ∧ (((b∗ ∧ a) →H (b∗ ∧ b)) →H a∗ = (b∗ ∧ ((b∗ ∧ a) →H 0)) →H a∗ =
(b∗ ∧ (a→H 0)) →H a∗ = (b∗ ∧ a∗) →H a∗ = 1, proving (1).

Lemma 6.6. Let A be a Stone semi-Heyting algebra. Let Ae be the expan-
sion of A to the language ⟨∨,∧,→,′ , 0, 1⟩, where we define ′ by: x′ := x∗.
Then

1. Ae ∈ DHMSH and satisfies the identity: x′ ≈ x∗,

2. Ae |= (x ∨ y)′′ ≈ x′′ ∨ y′′.

Proof: The lemma clearly follows from the well-known facts that A |=
(x ∨ y)∗ ≈ x∗ ∧ y∗ and A |= (x ∧ y)∗ ≈ x∗ ∨ y∗.

We will refer to the algebra Ae as an “essentially a Stone semi-Heyting
algebra”.
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For V a subvariety of StSH, we let

Ve := {Ae : L ∈ V}.

It is clear that Ve is a subvariety of DHMSH.
We are now ready to present our main result of this section that de-

scribes precisely those extensions of the logic DHMSH that have the De-
duction Property. The following theorem is immediate from Theorem 6.3,
Lemma 6.5 and Lemma 6.6.

Theorem 6.7. The Deduction Property holds in an extension E of the logic
DHMSH for the connective →H if and only if the corresponding variety
E is of the form Ve, where V ⊆ StSH. .

6.1. Deduction theorem in the extensions of the logic DQDSH

Recall that the variety DQDSH of dually quasi-De Morgan semi-Heyting
algebras and the corresponding extension DQDSH of DHMSH were de-
fined in Section 5.

In this section we show that Theorem 6.7 can be significantly improved
for the extensions of the logic DQDSH. In fact, we shall give an explicit
description of the extensions of the logic DQDSH in which the Deduction
Property holds.

For this purpose we need the following 2-element semi-Heyting algebras
(with 0 < 1), 2 and 2̄ which are, up to isomorphism, the only two 2-element
algebras in SH.

2:
→: 0 1

0 1 1
1 0 1

2̄:
→: 0 1

0 1 0
1 0 1

Figure 2.

The algebras 2e and 2̄e denote the expansions of the semi-Heyting al-
gebras 2 and 2̄ by the unary operation ′ defined as follows: 0′ = 1 and
1′ = 0. It is clear that 2e and 2̄e are, up to isomorphism, the only two
2-element algebras in DQDSH (in fact, in DMSH).
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Lemma 6.8. Let V be a subvariety of DQDSH such that V |= (x→H y) →
(y′ →H x′) ≈ 1. Then, V ⊆ V(2e, 2̄e), where V(2e, 2̄e) denotes the variety
generated by {2e, 2̄e}.

Proof: The hypothesis and Lemma 6.5 (2) imply that V |= x′ ≈ x∗.
Hence V ⊆ V(2e, 2̄e) by [29, Theorem 5.11].

The following theorem describes precisely those extensions of DQDSH
in which the Deduction Property holds. Let T denote the trivial variety.

Theorem 6.9. The Deduction Property holds in a logic E ∈ Ext(DQDSH)
for →H if and only if the corresponding variety is one of the following: T,
V(2e), V(2̄e), V(2e, 2̄e).

Proof: The theorem is immediate in view of Theorem 5.9, Theorem 6.3,
and Lemma 6.8.

Since DMSH ⊆ DQDSH and DPCSH ⊆ DQDSH (see [29]), the following
corollaries are immediate.

Corollary 6.10. The Deduction Property holds in a logic E ∈
Ext(DMSH) for →H if and only if the corresponding variety is an ele-
ment of {T, V(2e), V(2̄e), V(2e, 2̄e).

Corollary 6.11. The Deduction Property holds in a logic E ∈
Ext(DPCSH) for →H if and only if the corresponding variety is either
T or V(2e) or V(2̄e) or V(2e, 2̄e).

7. Logics in Ext(DQDSH) corresponding to
subvarieties of DQDSH generated by finitely many
finite algebras

In this section, as applications of Theorem 5.9 and the algebraic results
from [29], we will present several axiomatic extensions of the logic DQDSH
corresponding to subvarieties of DQDSH generated by finitely many finite
algebras, thus providing a solution to PROBLEM B.

7.1. 2-valued axiomatic extensions of DQDSH

It was shown in Theorem 6.9 that the Deduction Property holds in an
axiomatic extension of the logic DQDSH if and only if the corresponding
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variety is a subvariety of V(2e, 2̄e). So, it is only natural to ask for the
axiomatizations of the extensions of the logic DQDSH corresponding to
the subvarieties of V(2e, 2̄e).

The variety V(2e, 2̄e) and its only non-trivial proper subvarieties V(2e)
and V(2̄e) were axiomatized in [29, Theorem 5.11]. V(2e, 2̄e) is defined
by the identity: x ≤ x′∗ (equivalently, x ≈ x′∗), relative to the variety
DQDSH. The varieties V(2e) and V(2̄e) are defined, respectively, by the
identities: 0 → 1 ≈ 1 and 0 → 1 ≈ 0, relative to V(2e, 2̄e). In view of
these observations, we obtain from Theorem 5.9, the following corollaries
defining their corresponding logics.

Let L(2e, 2̄e) (or L(V(2e, 2̄e)) be the extension of the logic DQDSH
corresponding to the variety V(2e, 2̄e). Let α ⇔H β denote the formula:
(α→H β) ∧ (β →H α).

It follows from [29] that L(2e, 2̄e) is a discriminator logic.

Corollary 7.1. The logic L(2e, 2̄e) is defined, as an extension of the logic
DQDSH, by the axiom:

(∼ ϕ→ ⊥) ⇔H ϕ.

Let L(2e) (or L(V(2e))) and L(2̄e) (or L(V(2̄e))) denote, respectively,
the extensions of the logic L(2e, 2̄e) corresponding to the varieties V(2e)
and V(2̄e).

Corollary 7.2. The logic L(2e) is defined, as an extension of the logic
L(2e, 2̄e), by the axiom:

⊥ → ⊤.

(We note that L(2e) is yet another axiomatization of the classical
logic.).

Corollary 7.3. The logic L(2̄e) is defined, as an extension of the logic
L(2e, 2̄e), by the axiom:

(⊥ → ⊤) →H ⊥.

Remark 7.4. Some features of the logics L(2̄e) and L(2e):

• The logic L(2̄e) is “anti-classical” or “contra-classical” in the sense
that the classically provable formula ⊥ → ⊤ fails in it.
(It is somewhat perplexing to us that the intuitionists accept the
principle that says, “False→ True = True”.)
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• The logics L(2̄e) and L(2e) are two of the coatoms in the lattice of
extensions of the logic DMSH and hence that of DQDSH (and of
DHMSH).

• The implication → in L(2̄e) is commutative.

• The logics L(2̄e) and L(2e) are not only disriminator logics, but, in
fact, are primal logics, since 2e and (2̄e) are primal algebras.

• The logics L(2̄e) and L(2e) do not have the Disjunction Property
(i.e., if α ∨ β is provable, then α is provable or β is provable.)

More features of the logic L(2̄e) will be given in Remark 8.1 of Section 8.

Remark 7.5. The Deduction Theorem holds only in the three non-trivial
logics, namely L(2e), L(2̄e) and L(2e, 2̄e) in the lattice of extensions of
the logic DQDSH, in view of Theorem 6.9.

7.2. 3-valued extensions of the logic DQDSH

It was shown in [28] that there are, up to isomorphism, ten 3-element semi-
Heyting algebras whose → operations are defined in Figure 3 below, where
0 < a < 1.

Since 0′ = 1 and 1′ = 0, it is easy to see that there are exactly two
expansions on each of the above 10 semi-Heyting algebras by a unary op-
eration ′ so that the expansions are DQDSH-algebras. Ten of these that
correspond to a′ = a are clearly in DMSH. The other ten, that correspond
to a′ = 1 are in DPCSH.

To put it more precisely, let Ldm
i , i = 1, 2, . . . , 10, denote the expansion

of Li by adding the unary operation ′ such that 0′ = 1, 1′ = 0, and a′ = a.
Similarly, let Ldp

i , i = 1, 2, . . . , 10, denote the expansion of Li by adding
the unary operation ′ such that 0′ = 1, 1′ = 0, and a′ = 1. Then, clearly,
Ldm
i ∈ DMSH and Ldp

i ∈ DPCSH.
Let Cdm := {Ldm

i : i = 1, 2, . . . , 10}, Cdp := {Ldm
i : i = 1, 2, . . . , 10}

and let C20 := Cdm ∪ Cdp. Thus there are exactly 20 three-element
DQDSH-algebras, whose lattice reducts are chains. Let DQDSHC3 :=
V(C20), the subvariety of DQDSH generated by all the 20 3-element
DQDSH-chains. Also, let DMSHC3 := V(Cdm) and let DPCSHC3 :=
V(Cdp).

We shall now present axiomatizations for the logics corresponding to
DQDSHC3, DMSHC3, and DPCSHC3.
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L1:

0

a

1
→ 0 a 1
0 1 1 1
a 0 1 1
1 0 a 1

L2:

0

a

1
→ 0 a 1
0 1 a 1
a 0 1 1
1 0 a 1

L3:

0

a

1
→ 0 a 1
0 1 1 1
a 0 1 a
1 0 a 1

L4:

0

a

1
→ 0 a 1
0 1 a 1
a 0 1 a
1 0 a 1

L5:

0

a

1
→ 0 a 1
0 1 a a
a 0 1 1
1 0 a 1

L6:

0

a

1
→ 0 a 1
0 1 1 a
a 0 1 1
1 0 a 1

L7:

0

a

1
→ 0 a 1
0 1 a a
a 0 1 a
1 0 a 1

L8:

0

a

1
→ 0 a 1
0 1 1 a
a 0 1 a
1 0 a 1

L9:

0

a

1
→ 0 a 1
0 1 0 0
a 0 1 1
1 0 a 1

L10:

0

a

1
→ 0 a 1
0 1 0 0
a 0 1 a
1 0 a 1

Figure 3.
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The following theorem is immediate from [29, Lemma 10.2, Theorem
10.3, Corollary 10.4 and Theorem 11.1]. Let x+ := x′∗′. In the rest of the
paper, “equational base” is abbreviated to “base”.

Theorem 7.6 ([29]). A base for DQDSHC3, relative to DQDSH, is given
by:

(i) x∗∗ ≈ x∗′,

(ii) x ∧ x+ ≤ y ∨ y∗. (Regularity)

The following theorem follows from Theorem 5.9 and Theorem 7.6.

Theorem 7.7. The logic DQDSHC3 corresponding to the variety
DQDSHC3 is defined, as an extension of DQDSH, by the following axioms:

• [(ϕ→ ⊥) → ⊥] ⇔H ∼ (ϕ→ ⊥),

• [ϕ ∧ ∼ (∼ ϕ→ ⊥)] →H [ψ ∨ (ψ → ⊥)].

Since the logic DQDSHC3 is finitely axiomatized and the corresponding
variety DQDSHC3 = V(C20) is finitely generated, the following corollary
is immediate.

Corollary 7.8. The logic DQDSHC3 is decidable.

Note also that the logic DQDSHC3 is a discriminator logic.

7.3. Logics DMSHC3 and DPCSHC3

We know from Section 7.2 that Ldm
i ∈ DMSH and Ldp

i ∈ DPCSH,
i = 1, 2, . . . , 10, and also that DMSHC3 = V(Cdm) and DPCSHC3 =
V(Cdp).

The following theorem is immediate from Theorem 7.6.

Theorem 7.9.

(a) A base for DMSHC3, relative to DQDSHC3, is given by:

x′′ ≈ x.

(b) A base for DPCSHC3, relative to DQDSHC3, is given by:

x ∨ x′ ≈ 1.
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Let DMSHC3 and DPCSHC3 denote the extensions of the logic
DQDSHC3 corresponding to the varieties DMSHC3 and DPCSHC3, re-
spectively. The following theorem is immediate from Theorem 5.9 and
Theorem 7.9.

Theorem 7.10.

1. DMSHC3 is defined, as an extension of DQDSHC3 by the following
axiom:

ϕ→H ∼∼ ϕ.

2. DPCSHC3 is defined, relative to the logic DQDSHC3 by the following
axiom:

ϕ ∨ ∼ ϕ.

It is clear that the logics DMSHC3 and DPCSHC3 are decidable. In
view of the above Theorem it is also clear that the logic DPCSHC3 does
not have the Disjunction Property.

7.4. 3-valued extensions of DMSHC3 and of DPCSHC3

We are ready to look at the problem of axiomatization for the logics as-
sociated with the 20 3-element chains in C20. We need to recall another
(algebraic) result from [29] that gives a base for each of 3-chains in Cdm

and Cdp. To this end, we need the following identities from [29]:

(C1) x ∨ (x→ y) ≈ (x→ y)∗ → x,

(C2) x ∨ [y → (x ∨ y)] ≈ (0 → x) ∨ (x→ y),

(C3) x ∨ (y → x) ≈ [(x→ y) → y] → x,

(C4) x ∨ (x→ y) ≈ x→ [x ∨ (y → 1)],

(C5) (x→ y) → (0 → y) ≈ x ∨ [(x ∧ y) → 1],

(C6) x∗ ∨ (x→ y) ≈ (x ∨ y) → y,

(C7) x ∨ (0 → x) ∨ (y → 1) ≈ x ∨ [(x→ 1) → (x→ y)],

(C8) x ∨ y ∨ (x→ y) ≈ x ∨ [(x→ y) → 1],
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(C9) x ∨ [(0 → y) → y] ≈ x ∨ [(x→ 1) → y],

(C10) x ∨ [x→ (y ∧ (0 → y))] ≈ x→ [(x→ y) → y],

(C11) (0 → 1)∗ = 0,

(C12) x ∨ y ∨ [y → (y → x)] ≈ x→ [x ∨ (0 → y)],

(C13) x ∨ (x→ y) ≈ x ∨ [(x→ y) → 1],

(C14) 0 → 1 ≈ 0 (FTF identity),

(C15) x→ y ≈ y → x (commutative identity).

In Theorem 7.11 below, we abbreviate “is a base, relative to DMSHC3

[DPCSHC3]” to just “is a base”.
The reader should keep in mind that the following theorem is really a

simultaneous presentation of two separate theorems (in order to keep the
size of the paper within limits). One of the two theorems is regarding
DMSHC3-algebras and the other is about DPCSHC3-algebras. As an il-
lustration, item (i), when decoded, yields the following two (independent)
statements:

(idm): {(C1)} is a base, relative to DMSHC3, for the variety V(Ldm
1 ),

and

(idp): {(C1)} is a base, relative to DPCHC3, for the variety V(Ldp
1 ).

A similar remark applies to each of the other items of Theorem 7.11 as
well.

Theorem 7.11 is immediate from [29, Theorem 11.2].

Theorem 7.11.

(i) {(C1)} is a base for the variety V(Ldm
1 ) [V(Ldp

1 )],

(ii) {(C2), (C3)} is a base for the variety V(Ldm
2 ) [V(Ldp

2 )],

(iii) {(C2), (C4)} is a base for the variety V(Ldm
3 ) [V(Ldp

3 )],

(iv) {(C4), (C5)} is a base for the variety V(Ldm
4 ) [V(Ldp

4 )],
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(v) {(C7)} is a base for the variety V(Ldm
5 ) [V(Ldp

5 )],

(vi) {(C8)} is a base for the variety V(Ldm
6 ) [V(Ldp

6 )],

(vii) {(C9), (C10)} is a base for the variety V(Ldm
7 ) [V(Ldp

7 )],

(viii) {(C11), (C12)} is a base for the variety V(Ldm
8 ) [V(Ldp

8 )],

(ix) {(C6), (C13), (C14)} is a base for the variety V(Ldm
9 ) [V(Ldp

9 )],

(x) {(C15)} is a base for the variety V(Ldm
10 ) [V(Ldp

10 )].

We are now ready to present the axiomatizations for the logics associ-
ated with the 20 3-element chains in C20.

Let L(Ldm
i ) (or L(V(Ldm

i ))) denote the extension of the logic DMSHC3

corresponding to the variety V(Ldm
i ), for i = 1, 2, · · · , 10. Also, let L(Ldp

i )

(or L(V(Ldp
i ))) denote the extension of the logic DPCSHC3 corresponding

to the variety V(Ldp
i ), for i = 1, 2, · · · , 10.

In what follows, “defined, as an extension of the logic DMSHC3

[DPCSHC3], by” is abbreviated to “defined by”. The following theorem
will follow from Theorem 5.9, Theorem 7.9, Theorem 7.10, and Theo-
rem 7.11.

Theorem 7.12 below is, like Theorem 7.11, a simultaneous presentation
of two separate theorems (in order to keep the size of the paper within
limits). One of the two theorems is regarding the extensions of DMSHC3-
algebras and the other is about the extensions of DPCSHC3-algebras.

Theorem 7.12.

(a) L(Ldm
1 ) [L(Ldp

1 )] is defined by the following axiom:

[ϕ ∨ (ϕ→ ψ)] ⇔H [((ϕ→ ψ) → ⊥) → ϕ].

(b) L(Ldm
2 ) [L(Ldp

2 )] is defined by the following axioms:

(i) [ϕ ∨ {ψ → (ϕ ∨ ψ)}] ⇔H [(⊥ → ϕ) ∨ (ϕ→ ψ)],

(ii) [ϕ ∨ (ψ → ϕ)] ⇔H [{(ϕ→ ψ) → ψ} → ϕ].

(c) L(Ldm
3 ) [L(Ldp

3 )] is defined by the following axioms:

(i) [ϕ ∨ {ψ → (ϕ ∨ ψ)}] ⇔H [(⊥ → ϕ) ∨ (ϕ→ ψ)],

(ii) [ϕ ∨ (ϕ→ ψ)] ⇔H [ϕ→ {ϕ ∨ (ψ → ⊤)}].
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(d) L(Ldm
4 ) [L(Ldp

4 )] is defined by the following axioms:

(i) [ϕ ∨ (ϕ→ ψ)] ⇔H [ϕ→ {ϕ ∨ (ψ → ⊤)}],

(ii) [(ϕ→ ψ) → (⊥ → ψ)] ⇔H [ϕ ∨ {(ϕ ∧ ψ) → ⊤}].

(e) L(Ldm
5 ) [L(Ldp

5 )] is defined by the following axiom:

[ϕ ∨ (⊥ → ϕ) ∨ (ψ → ⊤)] ⇔H [ϕ ∨ {(ϕ→ ⊤) → (ϕ → ψ)}].

(f) L(Ldm
6 ) [L(Ldp

6 )] is defined by the following axiom:

[ϕ ∨ ψ ∨ (ϕ→ ψ)] ⇔H [ϕ ∨ {(ϕ→ ψ) → ⊤}].

(g) L(Ldm
7 ) [L(Ldp

7 )] is defined by the following axioms:

(i) [ϕ ∨ {(⊥ → ψ) → ψ}] ⇔H [ϕ ∨ {(ϕ→ ⊤) → ψ}],

(ii) [(ϕ ∨ {ϕ→ (ψ ∧ (⊥ → ψ))}] ⇔H [ϕ→ {(ϕ→ ψ) → ψ}].

(h) L(Ldm
8 ) [L(Ldp

8 )] is defined by the following axioms:

(i) ((⊥ → ⊤) → ⊥) →H ⊥,

(ii) [(ϕ ∨ ψ ∨ {ψ → (ψ → ϕ)}] ⇔H [ϕ→ {ϕ ∨ (⊥ → ψ)}].

(i) L(Ldm
9 ) [L(Ldp

9 )] is defined by the following axioms:

(i) [ϕ∗ ∨ (ϕ→ ψ)] ⇔H [(ϕ ∨ ψ) → ψ],

(ii) [ϕ ∨ (ϕ→ ψ)] ⇔H [ϕ ∨ {(ϕ→ ψ) → ⊤}],

(iii) (⊥ → ⊤) →H ⊥.

(j) L(Ldm
10 ) [L(Ldp

10)] is defined by the following axioms:

(ϕ→ ψ) →H (ψ → ϕ).

Remark 7.13. Some features of these logics:

• The logics L(Ldp
i ), i ∈ {2, 3, . . . , 10} and the logics L(Ldm

i ), i ∈
{2, 3, . . . , 10} are, just like the logic L(2̄e), “anti-classical” in the
sense that the classically provable formula ⊥ → ⊤ fails in these log-
ics.

• Each of the logics L(Ldp
i ), i ∈ {5, 6, 7, 8} and L(Ldp

i ), i ∈ {5, 6, 7, 8},
just like L(2e) and L(2̄e), is a coatom in the lattice of extensions of
the logic DQDSH.
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• Each of the logics L(Ldp
i ), i ∈ {1, 2, 3, 4} and L(Ldm

i ), i ∈ {1, 2, 3, 4}
is covered by the coatom L(2e), the classical propositional logic, while

each of the logics L(Ldp
i ), i ∈ {9, 10} and L(Ldm

i ), i ∈ {9, 10} is
covered by the coatom L(2̄e).

• In the logics L(Ldp
i ), i ∈ {9, 10} and L(Ldm

i ), i ∈ {9, 10}, Moreover,

in the logics L(Ldp
10 ) and L(Ldm

10 ), the connective → is commutative.

• The logics L(Ldm
i ) and L(Ldp

i ), i = 1, 2, · · · , 10, do not have the
(DP) as the formula α∗ ∨ α∗∗ is provable in these logics.

• The logics L(Ldp
i ), i ∈ {1, 2, 3, · · · , 10} and the logics L(Ldm

i ), i ∈
{1, 2, 3, · · · , 10} are quasiprimal.

• Each of the logics L(Ldp
i ), i ∈ {5, 6, 7, 8} and L(Ldp

i ), i ∈ {5, 6, 7, 8},
just like L(2e) and L(2̄e), is primal.

Further features of some of these logics will be given in Remark 8.1.
We note that all the logics mentioned in this subsection are decidable

as their corresponding varieties are easily seen to have the finite model
property.

7.5. 3-valued  Lukasiewicz Logic revisited

It is worthwhile to point out that the logic L(Ldm
1 ), defined earlier, has

an interesting relationship with the well-known 3-valued  Lukasiewicz logic.
Let us recall the definition of 3-valued  Lukasiewicz algebras.

An algebra A = ⟨A,∨,∧,′ , d1, d2, 0, 1⟩ is a 3-valued  Lukasiewicz alge-
bras if

1. ⟨A,∨,∧,′ , 0, 1⟩ is a De Morgan algebra,

2. di(x ∨ y) = di(x) ∨ di(y), for i = 1, 2,

3. di(x) ∨ (di(x))′ = 1, for i = 1, 2,

4. di(dj(x)) = dj(x), for i = 1, 2,

5. di(x
′) = (d3−i(x))′, for i = 1, 2,

6. d1(x) ≤ d2(x),

7. If d1(x) = d1(y) and d2(x) = d2(y) then x = y.
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Let L = ⟨{0, a, 1},∨,∧,′ .d1, d2, 0, 1⟩ be the algebra such that
⟨{0, a, 1},∨,∧,′ , 0, 1⟩ is a 3-element Kleene algebra with 0 < a < 1, and d1
and d2 are unary operations defined as follows: d1(0) = d1(a) = 0, d1(1) =
1, and d2(0) = 0, and d2(1) = d2(a) = 1. Then it is routine to verify that
L is a 3-valued  Lukasiewicz algebra. It is well-known that V(L) is precisely
the variety of all 3-valued  Lukasiewicz algebras.

Theorem 7.14. The logic L(Ldm
1 ) is equivalent to the 3-valued  Lukasiewicz

logic.

Proof: It suffices to prove that the variety V(Ldm
1 ) is term-equivalent to

the variety V( L). Without loss of generality, we can assume that Ldm
1 and

 L have the same universe, say L = {0, a, 1} with 0 < a < 1. Given Ldm
1 ,

define the unary operations d1 and d2 on L by: d1(x) = x′∗ and d2 =
x∗′. Then it is straightforward to verify that ⟨L;∨,∧,′ , d1, d2, 0, 1⟩ =  L.
To prove the converse, let us first define the unary function ∗ on L by:
x∗ := d1((d2(x))′). It is routine to verify that ∗ is the pseudocomplement
operation on L. Using ∗ we can now define the Katriňák’s implication →
by:

x→ y := (x∗ ∨ y∗∗) ∧ [(x ∨ x∗)′∗′ ∨ x∗ ∨ y ∨ y∗].

Then, → is the Heyting implication (see [26]). Hence, it follows that

⟨L;∨,∧,→,′ , 0, 1⟩ = Ldm
1 . The theorem is now proved.

7.6. 4-valued extensions of DQDSH with Boolean semi-Heyting
reducts

Recall that the variety DQDSH was defined in Section 5. An algebra L is a
dually quasi-De Morgan Boolean semi-Heyting algebra (DQDBSH-algebra,
for short) if its term-reduct ⟨L,∨,∧,∗ , 0, 1⟩ is a Boolean semi-Heyting al-
gebra, that is, L |= x ∨ x∗ ≈ 1. The variety of such algebras is denoted by
DQDBSH.

Let DQDBSH denote the logic corresponding to the variety DQDBSH.
The following theorem is now immediate, in view of Theorem 5.9.

Theorem 7.15. The logic DQDBSH is defined, relative to DQDSH by
the following axiom:

(B) ϕ ∨ (ϕ→ ⊥).
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D1:

→ 0 1 a b
0 1 0 b a
1 0 1 a b
a b a 1 0
b a b 0 1

D2:

→ 0 1 a b
0 1 1 1 1
1 0 1 a b
a b 1 1 b
b a 1 a 1

D3:

→ 0 1 a b
0 1 a 1 a
1 0 1 a b
a b a 1 0
b a 1 a 1

Figure 4.

We note that DQDBSH is a discriminator logic. In view of the above
Theorem it is also clear that the logic DQDBSH does not have the Dis-
junction Property.

The concrete description of the lattice of subvarieties of DQDBSH was
given in [29]. We now wish to present the axiomatizations for corresponding
extensions of the logic DQDBSH. Toward this end, the following three
algebras will be needed.

Figure 4 defines the → operation on the three 4-element algebras D1,
D2 and D3, each of whose lattice reduct is the 4-element Boolean lattice
having the universe {0, a, b, 1}, with b as the complement of a, and ′ is
defined as follows: a′ = a, b′ = b, 0′ = 1 and 1′ = 0.

The algebras D1, D2, and D3 are the only simple (=subdirectly irre-
ducible) algebras in DQDBSH.

The following theorem, which follows immediately from [29, Corollary
9.4], reveals the structure of DQDBSH.

Theorem 7.16. DQDBSH = V(D1,D2,D3) = DMBSH.

The above theorem leads us to the following decidability result, in view
of Theorem 5.9.

Corollary 7.17. The logic DQDBSH is decidable.

We will now turn our attention to the axiomatization of logics cor-
responding to the varieties generated by these algebras. The following
theorem is taken from [29, Theorem 9.5].
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Theorem 7.18.

(1) A base for the variety V(D1), modulo DQDBSH, is given by

0 → 1 ≈ 0.

(2) A base for V(D2), modulo DQDBSH, is given by

0 → 1 ≈ 1.

(3) A base for the variety V(D3), modulo DQDBSH, is given by

(0 → 1)′ ≈ 0 → 1.

The following corollary will now follow as an application of Theorem
5.9, Theorem 7.16 and Theorem 7.18.

Let L(Di) (or L(V(Di))) denote the extension of the logic DMBSH
corresponding to the variety V(Di) for i = 1, 2, 3.

In the rest of this section, “defined, relative to the logic DMBSH, by”
is abbreviated to “defined by”.

Corollary 7.19.

(1) The logic L(D1) is defined by the axiom:

(⊥ → ⊤) →H ⊥.

(2) The logic L(D2) is defined by the axiom:

⊥ → ⊤.

(3) The logic L(D3) is defined by the axiom:

∼ (⊥ → ⊤) ⇔H (⊥ → ⊤).

It is clear that the logics L(Di), i ∈ {1, 2, 3}, are decidable.

Remark 7.20. Some features of the logics L(Di), i ∈ {1, 2, 3}:

(a) The logics L(Di), i ∈ {1, 3}, are anti-classical since the formula ⊥ →
⊤ is not provable in each of them.
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(b) The logics L(D1) and L(D2), are covered, respectively, by the coa-
toms L(2̄e) and L(2e) in the lattice of extensions of the logic DQDSH.

(c) In the logic L(D1), the connective → is commutative.

(d) The logics L(D1) and L(D2) are quasiprimal, in the sense that their
corresponding varieties are generated by quasiprimal algebras D1 and
D2 respectively.

(e) The logic L(D3), just like L(2e) and L(2̄e), is a coatom in the lattice
of extensions of the logic DMSH and hence, of DHMSH.

(f) The logic L(D3) is primal.

Here is another feature of these algebras, since they have Boolean
reducts (i.e., they satisfy the identity: x ∨ x∗ ≈ 1).

Theorem 7.21. The logics L(2e), L(2̄e), L(2, 2̄e), L(V(D1,D2,D3)),
L(D1), L(D2), L(D3) do not have the disjunction property.

Further features of some of these and other logics will be given in Re-
marks 8.1 and 8.2.

8. Connection to connexive logics

The fact that the identity 0 → 1 ≈ 0 holds in some semi-Heyting algebras
led us to consider, in 2020, the possibility that there might be connexive
logics arising from semi-Heyting algebras. We noticed in May 2020 that
that indeed was the case.

Let L be a language containing the connective symbols: → for impli-
cation and ¬ for negation. A logic L in L is a connexive logic (see [38],
for example) if the following Aristotle’s Theses and Boethius’ Theses are
theorems in L:

Aristotle’s Theses:

(AT) ¬(¬α→ α),

(AT’) ¬(α→ ¬α).
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Boethius’ Theses:

(BT) (α→ β) → ¬(α→ ¬β),

(BT’) (α→ ¬β) → ¬(α→ β).

For more details on the motivation, the origin and the history of con-
nexive logics, see [38] and [18]. Many of the extensions of the logics
SH and DHMSH, to our surprise, turn out to be connexive logics with
¬α := α → ⊥. We present a few of these below. (More will be said in the
paper [12] which is in preparation.)

Recall that 2̄, L9, and L10, are in SH and that their corresponging logics
L(2̄), L(L9) and L(L10) are extensions of the semi-intuitionistic logic SI.

Remark 8.1.

(a) The logics L(2̄) and L(L9), which are extensions of the semi-intuitionistic
logic SI, are connexive logics since the corresponding varieties V(2̄)
and V(L9) satisfy the following identities:

(i) (x∗ → x)∗ ≈ 1,

(ii) (x→ x∗)∗ ≈ 1,

(iii) (x→ y) → (x→ y∗)∗ ≈ 1,

(iv) (x→ y∗) → (x→ y)∗ ≈ 1.

(b) (AT) and (AT’) are theorems in the logic L(L10), since the corre-
sponding variety V(L10) satisfies the identities (i) and (ii), while (BT)
and (BT’) are not theorems in the logics L(L10).

(c) Since it is easily seen that V(2) and V(2̄) are term-equivalent, it
follows that the classical logic L(2) is equivalent to L(2̄). Hence the
classical logic L(2) can be viewed as a connexive logic.

Remark 8.2.

(a) The logics L(2̄e), L(Ldp
9 ), L(Ldm

9 ) and D1, which are extensions of
the logic DHMSH, are connexive logics since it is easily verified that
their corresponding varieties V(2̄e), V(Ldp

9 ), V(Ldm
9 ), and V(D1)

satisfy the identities (i)–(iv).
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(b) (AT) and (AT’) are theorems in the logics L(Ldp
10 ) and L(Ldm

10 ), since

the corresponding varieties V(Ldp
10 ) and V(Ldp

10 ) satisfy the identities
(i) and (ii), while (BT) and (BT’) are not theorems in the logics

L(Ldp
10 ) and L(Ldm

10 ).

(c) Since it is easy to see that V(Ldm
1 ) and V(Ldm

9 ) are term-equivalent,
it follows that the logic L(Ldm

1 ) is equivalent to L(Ldm
9 ). Hence the

logic L(Ldm
1 )can be viewed as a connexive logic. Furthermore, since

the logic L(Ldm
1 ) is equivalent to the 3-valued  Lukasiewicz logic, it

follows that the 3-valued  Lukasiewicz logic is a connexive logic.

(d) Since it is easily observed that V(D1) and V(D2) are term-equivalent,
it follows that the logic L(D1) is equivalent to L(D2). Hence the logic
L(D2) can be viewed as a connexive logic.

Jarmużek and Malinowski [18] have recently introduced the notion of a
“quasi-connexive” logic. A logic is quasi-connexive iff it is not connexive,
but at least one of (AT), (AT’), (BT) and (BT’) is a theorem in the logic.

Thus, in view of the above remark, the logics L(Ldp
10 ) and L(Ldm

10 ), as well
as the extension L(L10) of SH, can be viewed as quasi-connexive logics.

We now mention a few facts about the relationships among the Aristo-
tle’s Theses and Boethius’ Theses in the logics SH and DHMSH whose
proofs will appear in the forthcoming paper [12].

Theorem 8.3. In the logic SH, and hence in DHMSH,

(a) (AT) and (AT’) are equivalent.

(b) (AT), (AT’) and (BT’) are provable from (BT).

(c) (AT), (AT’) are provable from (BT’), but (BT) is not.

(d) If A ∈ SH satisfies (BT), then A |= x→ y∗ ≈ y → x∗.

Theorem 8.4. Let A ∈ RDPCH and define a new operation ⇒ on A by:
x⇒ y := (x→ y) ∧ (x∗ → y∗). Then (x⇒ y) ⇒ (x⇒ y∗)∗ = 1.

As an application of Theorem 8.4 and recent results of [4], the following
corollary is deduced in [12].

Corollary 8.5. There are 2ℵ0 axiomatic extensions of the logic RDPCH.

Remark 8.6. We propose that any logic in which the (classically provable)
formula ⊥ → ⊤ is not provable be included in the family of connexive



606 Juan M. Cornejo, Hanamantagouda P. Sankappanavar

logics since such a logic would be not only anti-classical but also anti-
intuitionistic logic. Accordingly, the logics L(2̄e), L(Li

dp), i = 5, . . . , 10,
L(Li

dm), i = 5, . . . , 10, V(D1) and V(D3) can be considered as connexive
logics.

9. Two infinite chains of extensions of the logic
DQDH

Recall that the logic DQDH corresponds to the variety of dually quasi-De
Morgan Heyting algebras. In this section, we present two infinite chains of
logics that are extensions of the logic DQDH.

9.1. De Morgan-Gödel logic and its extensions

Recall that the variety DMH of De Morgan Heyting algebras is the sub-
variety of DQDH defined by the axiom: x′′ ≈ x. A De Morgan Heyting
algebra whose lattice reduct is a chain is called a De Morgan Heyting chain.
Let DMHC denote the subvariety of DMSH generated by the De Morgan
Heyting chains. It is proved in [29, Theorem 12.5] that the lattice of sub-
varieties of the variety DMHC is an ω + 1-chain. Let DMG (or DMHC)
denote the extension of the logic DMH, corresponding to DMHC. We will
refer to the logic DMG as “De Morgan-Gödel logic.” Then it follows that
the lattice of extensions of DMG is a chain dual to ω + 1.

In this subsection, we present axiomatizations for the logics correspond-
ing to the subvarieties of DMHC. For this purpose, we need the following
algebraic result which was proved in [29, Theorem 12.3].

Theorem 9.1. [29] A base for DMHC, relative to DMSH, is given by:

(1) x∗′ ≈ x∗∗,

(2) (x→ y) ∨ (y → x) ≈ 1.

Hence we have the following axiomatization for the logic DMG, relative
to the logic DMSH.
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Corollary 9.2. The logic DMG, relative to the logic DMSH is defined
by:

(i) ∼ (α→ ⊥) ⇔H ((α→ ⊥) → ⊥),

(ii) (α→ β) ∨ (β → α).

In view of the axiom (ii) it is clear that the logic DMG does not have
the Disjunction Property.

Let DMHCn denote the subvariety of DMHC generated by the n-
element DMH-chain, where n ∈ N with n ≥ 2. Let DMGn denote the
extension of the logic DMG corresponding to the subvariety DMHCn of
DMHC generated by the n-element DMH-chain, where n ∈ ω with n ≥ 2.

Next we will present an axiomatization for the logic DMGn for n ∈ N
with n ≥ 2.

Theorem 9.3 ([29]). Let n ∈ ω such that n ≥ 2. Then DMHCn is defined,
mod DMHC, by the following axiom:

(

i=n∨
i=1

xi) ∨ [

i=n−1∨
i=1

(xi → xi+1)] ≈ 1.

Hence we have the following axiomatization of the logic DMGn.

Corollary 9.4. Let n ∈ ω such that n ≥ 2. Then the logic DMGn,
relative to the logic DMG, is defined by

(

i=n∨
i=1

αi) ∨ [

i=n−1∨
i=1

(αi → αi+1)].

In view of the above corollary, it is clear that the logic DMGn, n ≥ 2,
does not have the Disjunction Property.

9.2. Dually pseudocomplemented Gödel logic and its axiomatic
extensions

A DPCSH-algebra L = ⟨L,∧,∨,→,′ , 0, 1⟩, whose lattice reduct is a chain, is
called a DPCSH-chain. Let DPCHC denote the subvariety of DPCH gener-
ated by the DPCH-chains. Observe that DPCHC = DStHC. It was implicit
in [29, Section 13] that the lattice of subvarieties of the variety DPCHC
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is an ω + 1-chain and was explicitly proved in [33, Theorem 4.7]. We let
DPCG (or DPCHC) denote the extension of the logic DPCH corresponding
to DPCHC. The logic DPCG will be referred to as “dually pseudocomple-
mented Gödel logic”. It follows from the just mentioned algebraic result
that the extensions of DPCG form a chain dual to ω + 1.

In this subsection, we present axiomatizations for the logics correspond-
ing to the subvarieties of DPCHC. For this purpose, we need the following
algebraic result which was proved in [29, Theorem 13.2]. Let x+ := x′∗′.

Theorem 9.5. The following identities form a base, mod DQDSH, for
DPCHC:

(i) x+ ≈ x′,

(ii) (x→ y) ∨ (y → x) ≈ 1.

Corollary 9.6. The logic DPCG is defined, as an extension of the logic
DQDSH by

(i) α+ ⇔H ∼ α, where α+ := ∼ (∼ α→ ⊥).

(ii) (α→ β) ∨ (β → α).

In view of the axiom (ii) it is clear that the logic DPCG does not have
the Disjunction Property.

Let n ∈ ω such that n ≥ 2 and let DPCHCn denote the variety generated
by the n-element DPCH-chain. Let DPCGn denote the extension of the
logic DPCG corresponding to the subvariety DPCHCn of DPCHC generated
by the n-element DPCH-chain, where n ∈ ω with n ≥ 2

The following theorem, which follows from [29, Theorem 13.3], gives a
base for each subvariety DPCHCn of DPCHC.

Theorem 9.7. Let n ∈ ω such that n ≥ 2. Then, {(An)} is an equational
base, mod DPCG, for DPCGn, where (An) is the following axiom:

j=n∨
j=1

xj ∨
j=n−1∨
j=1

(xj → xj+1) ≈ 1.
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Corollary 9.8. Let n ∈ ω such that n ≥ 2. Then the logic DPCGn is
defined as an extension of the logic DPCG by (Λn), where (Λn) is the fol-
lowing formula:

j=n∨
j=1

αj ∨
j=n−1∨
j=1

(αj → αj+1).

In view of the above corollary, it is clear that the logic DPCGn, n ≥ 2,
does not have the Disjunction Property.

10. Logics corresponding to subvarieties of regular
dually quasi-De Morgan Stone semi-Heyting
algebras

In the rest of the paper we will give axiomatizations for more new logics that
are extensions of DQDSH, as applications of Theorem 5.9 and the algebraic
results from [30, 31, 32, 33, 34]). Recall from Section 7.2 that C20 =
Cdm ∪ Cdp, where Cdm := {Ldm

i : i = 1, 2, . . . , 10}, Cdp := {Ldm
i : i =

1, 2, . . . , 10} and that the algebras Ldm
i , Ldp

i were defined in Section 8.2 and
the three 4-element algebras D1, D2 and D3 were defined in Section 7.6.
Recall also that DQDSHC3 = V(C20) which is the subvariety of DQDSHC
generated by all the 20 3-element DQDSH-chains.

The notion of regularity has played an important role in [4, 5, 9, 19, 24,
26, 29, 30, 31, 32, 33, 34, 35, 36, 37].

An algebra A ∈ DQDSH is called regular ([29, 30, 31]) if A satisfies:

(R) x ∧ x+ ≤ y ∨ y∗,

where x+ := x′∗′.

The subvariety of DQDSH of regular algebras is denoted by RDQDSH.
(We caution the reader that the term “regular” was used in [29] to mean
something else.)

Observe from Theorem 7.6 that DQDSHC3 ⊂ RDQDSH.
The concept of level has played an important role in finding discrimi-

nator subvarieties of DQDSH (see [29, Corollary 8.2]). Here we only need
to define DQDSH-algebras of level 1.
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An algebra A ∈ DQDSH is of level 1 if A satisfies:

x ∧ x′∗ ≈ x ∧ x′∗ ∧ x′∗′∗.

For the varieties of level 1 considered in the rest of the paper, the above
definition of “level 1” is equivalent to the following:

x ∧ x′∗ ≈ (x ∧ x′∗)′∗.

Let DQDSH1 denote the variety of DQDSH-algebras of level 1. Let
DQDStSH denote the subvariety of DQDSH that satisfies the Stone iden-
tity:

(St) x∗ ∨ x∗∗ ≈ 1.

DQDStSH1 denotes the subvariety of DQDStSH of level 1, while
RDQDStSH1 denotes the subvariety of DQDStSH1 defined by (R).

In this section we present axiomatizations for new logics corresponding
to several subvarieties of the variety RDQDStSH1 of regular dually quasi-
De Morgan Stone semi-Heyting algebras of level 1.

In what follows, V (or L(V)) denotes the logic corresponding
to the subvariety V of DQDSH-algebras.

(Thus, for example, the logic DQDStSH1 corresponds to the variety
DQDStSH1.)

The following corollary is immediate from the above definitions and
Theorem 5.9.

Corollary 10.1.

(a) The logic DQDStSH1 is defined, as an extension of the logic DQDSH,
by the following axioms:

(1) [∼ {(α ∧ (∼ α)∗}]∗ ⇔H α ∧ (∼ α)∗,

(2) α∗ ∨ α∗∗.

(b) The logic RDQDStSH1 is defined, as an extension of the logic
DQDStSH1 by the following axiom:

(α ∧ α+) →H (β ∨ β∗).

The following result is taken from [31, Theorem 3.1].
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Theorem 10.2. RDQDStSH1 = V(C20 ∪ {D1,D2,D3}). In particular,

RDQDStH1 = V({Ldm
1 ,Ldp

1 ,D2}).

The following corollary is immediate from Theorem 10.2 and Theorem
5.9, as the variety RDQDStSH1 is finitely axiomatized and is generated by
a finite set of finite algebras.

Corollary 10.3. The logics RDQDStSH1 and RDQDStH1 are decid-
able.

In view of the above corollary, it would be of interest to know if the logic
DQDStSH1 is decidable; in particular, if the logic DQDStH1 is decidable.
This naturally leads us to the following open problem.

PROBLEM 2: Is the variety DQDStH1 generated by its finite members?

More generally, we can ask the following:

PROBLEM 3: Is the variety DQDStSH1 generated by its finite mem-
bers?

Remark 10.4. It was shown in [29] that the variety RDQDStSH1 is a dis-
criminator variety. Thus RDQDStSH1 is a discriminator logic.

Recall that RDMSH1 is the variety of regular De Morgan semi-Heyting
algebras of level 1 and RDMSH1 denotes its corresponding logic. Let
RDMStSH1 and RDMStH1 denote, respectively, the varieties of regular
De Morgan Stone semi-Heyting algebras and regular De Morgan Stone
semi-Heyting algebras of level 1. Similarly, the varieties RDPCStSH1 and
RDPCStH1 denote, respectively, the varieties of regular dually pseudocom-
plemented Stone semi-Heyting algebras and regular dually pseudocomple-
mented Stone Heyting algebras. Note that all these varieties are subvari-
eties of RDQDStSH1.

Recall DMSHC3 = V(Cdm) and DPCSHC3 = V(Cdp).
The following corollary is immediate from Theorem 10.2, where “is

defined by” means “is defined, as an extension of RDQDStSH1, by”.
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Corollary 10.5.

(a) The logic RDMStSH1 is defined by

α →H α′′.

(b) The logic RDPCStSH1 is defined by

α ∨ α′.

(c) The logic RDMStH1 is defined by

(α ∧ β) → α.

(d) The logic RDPCStH1 is defined by

(α ∧ β) → α.

The following theorem was recently proved in [34].

Theorem 10.6 ([34, Corollary 3.4]). DMSH1 = DMStSH1. In particular,
RDMSH1 = RDMStSH1.

The following theorem is immediate from Theorem 10.6 and [31, Corol-
lary 3.4].

Theorem 10.7.

(a) RDMSH1 = RDMStSH1 = V(Cdm) ∨ V({D1,D2,D3}),

(b) RDMH1 = RDMStH1 = V({Ldm
1 ,D2}) = V(Ldm

1 ) ∨ V(D2),

(c) RDPCStSH1 = V(Cdp),

(d) RDPCStH1 = V(Ldp
1 ).

It is clear from Theorem 10.7 that the logics RDMSH1 and RDMStSH1

are equivalent and so are RDMH1 and RDMStH1.
The following corollary is immediate from Theorem 10.7.

Corollary 10.8. The logics RDMSH1 and RDPCStSH1 are decidable.
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Let RDQDcmStSH1 be the subvariety of RDQDStSH1 defined by the
commutative law:

x→ y ≈ y → x.

Corollary 10.9. The logic RDQDcmStH1 is defined, as an extension of
RDQDStSH1, by

(α→ β) →H (β → α).

The following theorem is an immediate consequence of Theorem 10.2
and Theorem 10.7.

Theorem 10.10 ([31, Corollary 3.5]).

(a) RDQDcmStSH1 =V(Ldm
10 ) ∨ V(Ldp

10) ∨ V(D1),

(b) RDMcmSH1 = RDMcmStSH1 = V({Ldm
10 ,D1}),

(c) RDPCcmStSH1 = V((Ldp
10),

(d) RDMcmSH1 ∩ RDPCcmStSH1 = V(2̄e).

It follows from the preceding theorem that the logics RDQDcmStSH1,
RDMcmSH1 and RDPCcmStSH1 are decidable.

In the rest of this section, unless otherwise stated, the phrase “defined,
modulo RDQDStSH1, by” is abbreviated to the phrase “defined by” in the
context of varieties. Similarly, the phrase “defined, as an extension of
the logic RDQDStSH1, by” is also abbreviated to the phrase “defined by”
in the case of logics.

The theorems that appear in the rest of this section were proved in
[31]. Each of the corollaries appearing below follows from the theorem
immediately preceding it and Theorem 5.9.

Theorem 10.11. The variety V({Ldm
1 ,Ldp

1 ,Ldm
3 ,Ldp

3 ,D2}) is defined by
the identity:

(x→ y) → (0 → y) ≈ (x→ y) → 1.

Corollary 10.12. The logic L(V(Ldm
1 ,Ldp

1 ,Ldm
3 ,Ldp

3 ,D2)) is defined by

[(α→ β) → (⊥ → β)] ⇔H [(α→ β) → ⊤].

The variety generated by D1 was axiomatized earlier in Section 7. Here
are two more bases for it.
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Theorem 10.13. V(D1) is defined by

x→ (y → z) ≈ z → (x→ y).

It is also defined by

(x→ y) → (u→ w) ≈ (x→ u) → (y → w). (Medial Law)

Corollary 10.14. The logic L(V(D1)) is defined by

α→ (β → γ) ⇔H γ → (α→ β).

It is also defined by

(α→ β) → (γ → δ) ⇔H ((α→ γ) → (β → δ)). (Medial Law)

Theorem 10.15. The variety V({Ldm
1 ,Ldp

1 ,Ldm
2 ,Ldp

2 ,D2}) is defined by:

y ≤ x→ y.

It is also defined by:

[(x→ y) → y] → (x→ y) ≈ x→ y.

It is also defined by

x→ (y → z) ≈ (x→ y) → (x→ z). (Left distributive law)

Corollary 10.16. The logic L(V({Ldm
1 ,Ldp

1 ,Ldm
2 ,Ldp

2 ,D2}) is defined
by

β ∧ (α→ β) ⇔H β.

It is also defined by:

[(α→ β) → β] → (α→ β) ⇔H (α→ β).

It is also defined by

α→ (β → γ) ⇔H [(α→ β) → (α→ γ).

Theorem 10.17. The variety V({Ldm
1 ,Ldp

1 ,Ldm
2 ,Ldp

2 ,Ldm
5 ,Ldp

5 ,Ldm
6 ,

Ldp
6 ,D2}) is defined by:

[x→ (y → x)] → x ≈ x.

Corollary 10.18. The logic L(V({Ldm
1 ,Ldp

1 ,Ldm
2 ,Ldp

2 ,Ldm
5 ,Ldp

5 ,Ldm
6 ,

Ldp
6 ,D2})) is defined by

[{α→ (β → α)} → α] ⇔H α.
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Theorem 10.19. V({Ldp
1 ,Ldp

2 ,Ldp
5 ,Ldp

6 }) is defined by:

(1) [x→ (y → x)] → x ≈ x,

(2) x ∨ x′ ≈ 1.

Corollary 10.20. The logic L(V({Ldp
1 ,Ldp

2 ,Ldp
5 ,Ldp

6 })) is defined by

(1) [{α→ (β → α)} → α] ⇔H α,

(2) α ∨ ∼ α.

In view of the above corollary, it is clear that the logic in question does
not have the Disjunction Property. Recall that x+ := x′∗′.

Theorem 10.21. The variety generated by the set {Ldm
1 ,Ldp

1 ,Ldm
2 ,Ldp

2 ,

Ldm
3 ,Ldp

3 ,Ldm
4 ,Ldp

4 ,Ldm
5 ,Ldm

6 ,Ldm
7 ,Ldm

8 ,D2,D3} is defined by the iden-
tity:

(0 → 1)+ → (0 → 1)′ ≈ 0 → 1.

Corollary 10.22. Let L0 = L((V({Ldm
1 ,Ldp

1 ,Ldm
2 ,Ldp

2 ,Ldm
3 ,Ldp

3 ,Ldm
4 ,

Ldp
4 ,Ldm

5 ,Ldm
6 , Ldm

7 ,Ldm
8 ,D2,D3})). Then L0 is defined by

[(⊥ → ⊤)+ → ∼ (⊥ → ⊤)] ⇔H (⊥ → ⊤).

Theorem 10.23. The variety V({Ldp
1 ,Ldp

2 ,Ldp
3 ,Ldp

4 }) is defined by the
identities:

(1) (0 → 1)+ → (0 → 1)′ ≈ 0 → 1,

(2) x ∨ x′ ≈ 1.

Corollary 10.24. The logic L(V({Ldp
1 ,Ldp

2 ,Ldp
3 ,Ldp

4 })) is defined by

(1) [(⊥ → ⊤)+ → ∼ (⊥ → ⊤)] ⇔H (⊥ → ⊤),

(2) α ∨ ∼ α.

In view of the above corollary, it is clear that the logic in question does
not have the Disjunction Property.

Theorem 10.25. The variety V({Ldm
1 ,Ldm

2 ,Ldm
3 ,Ldm

4 ,Ldm
5 ,Ldm

6 ,Ldm
7 ,

Ldm
8 ,D2,D3}) is defined by the identities:

(1) (0 → 1)+ → (0 → 1)′ ≈ 0 → 1,

(2) x′′ ≈ x.
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Corollary 10.26. The logic L(V({Ldm
1 ,Ldm

2 ,Ldm
3 ,Ldm

4 ,Ldm
5 ,Ldm

6 ,Ldm
7 ,

Ldm
8 ,D2,D3})) is defined by

(1) [(⊥ → ⊤)+ → ∼ (⊥ → ⊤)] ⇔H (⊥ → ⊤),

(2) α→H ∼∼ α.

Theorem 10.27. The variety V({Ldm
5 ,Ldm

6 ,Ldm
7 ,Ldm

8 ,D3}) is defined by
the identity:

(0 → 1)+ → (0 → 1) ≈ (0 → 1)′.

Corollary 10.28. The logic L(V({Ldm
5 ,Ldm

6 ,Ldm
7 ,Ldm

8 ,D3})) is defined
by

[(⊥ → ⊤)+ → (⊥ → ⊤)] ⇔H ∼ (⊥ → ⊤).

V(D3) was axiomatized in Section 7. Here is another base for it.

Theorem 10.29. V(D3) is defined by the identities:

(1) (0 → 1)+ → (0 → 1) ≈ (0 → 1)′,

(2) x ∨ x∗ ≈ 1.

Corollary 10.30. The logic L(V({D3})) is defined by

(1) (⊥ → ⊤)+ → (⊥ → ⊤) ⇔H ∼ (⊥ → ⊤),

(2) α ∨ α∗.

In view of the above corollary, it is clear that the logic in question does
not have the Disjunction Property.

Theorem 10.31. The variety generated by the algebras Ldm
1 ,Ldm

2 ,
Ldm
3 ,Ldm

4 , D2,D3 is defined by the identities:

(1) (0 → 1)+ → (0 → 1)′ ≈ 0 → 1,

(2) (0 → 1)+ → (0 → 1)∗′∗ ≈ 0 → 1,

(3) x′′ ≈ x.

Corollary 10.32. The logic L(V({Ldm
1 ,Ldm

2 ,Ldm
3 ,Ldm

4 ,D2,D3})) is de-
fined by

(1) (⊥ → ⊤)+ → ∼ (⊥ → ⊤) ⇔H (⊥ → ⊤),

(2) [(⊥ → ⊤)+ → (∼ (⊥ → ⊤)∗)∗] ⇔H (⊥ → ⊤),

(3) α→H ∼∼ α.
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Theorem 10.33. The variety generated by the algebras Ldm
5 ,Ldp

5 ,Ldm
6 ,

Ldp
6 ,Ldm

7 ,Ldp
7 ,Ldm

8 ,Ldp
8 ,Ldp

9 ,Ldm
9 ,Ldp

10 ,L
dm
10 , D1,D3 is defined by the

identity:

(0 → 1)+ → (0 → 1)′ ≈ (0 → 1)′.

Corollary 10.34. The logic corresponding to the variety generated by
{Ldm

5 ,Ldp
5 ,Ldm

6 ,Ldp
6 ,Ldm

7 ,Ldp
7 ,Ldm

8 ,Ldp
8 ,Ldm

9 ,Ldp
9 ,Ldm

10 ,L
dp
10 ,D1,D3}

is defined by

[(⊥ → ⊤)+ → ∼ (⊥ → ⊤)] ⇔H ∼ (⊥ → ⊤).

Theorem 10.35. The variety generated by the algebras Ldp
5 ,Ldp

6 ,Ldp
7 ,Ldp

8 ,

Ldp
9 ,Ldp

10 is defined by the identities:

(1) (0 → 1)+ → (0 → 1)′ ≈ (0 → 1)′,

(2) x ∨ x′ ≈ 1.

Corollary 10.36. The logic L(V({Ldp
5 ,Ldp

6 ,Ldp
7 ,Ldp

8 ,Ldp
9 ,Ldp

10})) is de-
fined by

(1) [(⊥ → ⊤)+ → ∼ (⊥ → ⊤)] ⇔H ∼ (⊥ → ⊤),

(2) α ∨ ∼ α.

In view of the above corollary, it is clear that the logic in question does
not have the Disjunction Property.

Theorem 10.37. The variety generated by the algebras Ldm
5 ,Ldm

6 ,Ldm
7 ,

Ldm
8 ,Ldm

9 ,Ldm
10 , D1,D3 is defined by the identities:

(1) (0 → 1)+ → (0 → 1)′ ≈ (0 → 1)′,

(2) x′′ ≈ x.

Corollary 10.38. The logic L(V({Ldm
5 ,Ldm

6 ,Ldm
7 ,Ldm

8 ,Ldm
9 ,Ldm

10 ,D1,
D3})) is defined by

(1) [(⊥ → ⊤)+ → ∼ (⊥ → ⊤)] ⇔H ∼ (⊥ → ⊤),

(2) α→H ∼∼ α.

Theorem 10.39. The variety generated by the algebras D1,D3 is defined
by the identities:

(1) (0 → 1)+ → (0 → 1)′ ≈ (0 → 1)′,

(2) x ∨ x∗ ≈ 1.
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Corollary 10.40. The logic L(V({D1,D3})) is defined by

(1) [(⊥ → ⊤)+ → ∼ (⊥ → ⊤)] ⇔H ∼ (⊥ → ⊤),

(2) α ∨ α∗.

In view of the above corollary, it is clear that the logic in question does
not have the Disjunction Property.

Theorem 10.41. The variety generated by the algebras Ldm
5 ,Ldm

6 ,Ldm
7 ,

Ldm
8 ,D3 is defined by the identities:

(1) (0 → 1)+ → (0 → 1)′ ≈ (0 → 1)′,

(2) (0 → 1)+ → (0 → 1)′ ≈ (0 → 1).

It is also defined by

(0 → 1)′ ≈ 0 → 1.

Corollary 10.42. The logic L(V({Ldm
5 ,Ldm

6 ,Ldm
7 ,Ldm

8 ,D3})) is defined
by

(1) [(⊥ → ⊤)+ → ∼ (⊥ → ⊤)] ⇔H ∼ (⊥ → ⊤),

(2) [(⊥ → ⊤)+ → ∼ (⊥ → ⊤)] ⇔H (⊥ → ⊤).

It is also defined by

∼ (⊥ → ⊤) ⇔H (⊥ → ⊤).

Theorem 10.43. The variety generated by the algebras Ldm
1 ,Ldp

1 ,Ldm
2 ,

Ldp
2 , Ldm

3 , Ldp
3 , Ldm

4 , Ldp
4 , Ldp

5 , Ldp
6 , Ldp

7 , Ldp
8 , Ldm

9 , Ldp
9 , Ldm

10 , Ldp
10 ,

D1, D2 is defined by the identity:

(0 → 1)′ → (0 → 1) ≈ 0 → 1.

Corollary 10.44. The logic corresponding to the variety generated by
the algebras Ldm

1 , Ldp
1 , Ldm

2 , Ldp
2 , Ldm

3 , Ldp
3 , Ldm

4 , Ldp
4 , Ldp

5 , Ldp
6 , Ldp

7 ,

Ldp
8 , Ldm

9 ,Ldp
9 ,Ldm

10 ,L
dp
10 ,D1,D2 is defined by

[∼ (⊥ → ⊤) → (⊥ → ⊤)] ⇔H (⊥ → ⊤).

Theorem 10.45. The variety generated by the algebras Ldm
1 ,Ldm

2 ,Ldm
3 ,

Ldm
4 ,Ldm

9 ,Ldm
10 , D1,D2 is defined by the identities:

(1) (0 → 1)′ → (0 → 1) ≈ 0 → 1,

(2) x′′ ≈ x.
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Corollary 10.46. The logic L(V({Ldm
1 ,Ldm

2 ,Ldm
3 ,Ldm

4 ,Ldm
9 ,Ldm

10 ,D1,
D2})) is defined by

(1) [∼ (⊥ → ⊤) → (⊥ → ⊤)] ⇔H (⊥ → ⊤),

(2) α→H ∼∼ α.

Theorem 10.47. The variety generated by the algebras D1,D2 is defined
by the identities:

(1) (0 → 1)′ → (0 → 1) ≈ 0 → 1,

(2) x ∨ x∗ ≈ 1.

Corollary 10.48. The logic L(V({D1,D2})) is defined by

(1) [∼ (⊥ → ⊤) → (⊥ → ⊤)] ⇔H (⊥ → ⊤),

(2) α ∨ α∗.

In view of the above corollary, it is clear that the logic in question does
not have the Disjunction Property.

Theorem 10.49. The variety generated by the algebras Ldm
1 ,Ldp

1 ,Ldm
3 ,

Ldp
3 ,Ldm

6 ,Ldp
6 ,Ldm

8 ,Ldp
8 ,D1,D2,D3 is defined by the identity:

x ∨ [y → (x ∨ y)] ≈ (0 → x) ∨ x ∨ y.

Corollary 10.50. The logic L(V({Ldm
1 ,Ldp

1 ,Ldm
3 ,Ldp

3 ,Ldm
6 ,Ldp

6 ,Ldm
8 ,

Ldp
8 ,D1,D2,D3})) is defined by

[α ∨ {β → (α ∨ β)}] ⇔H [(⊥ → α) ∨ α ∨ β].

Theorem 10.51. The variety generated by the algebras Ldm
2 ,Ldp

2 ,Ldm
5 ,

Ldp
5 ,D2 is defined by the identity:

x ∨ (y → x) ≈ [(x→ y) → y] → x.

Corollary 10.52. The logic L(V({Ldm
2 ,Ldp

2 ,Ldm
5 ,Ldp

5 ,D2})) is defined
by

[α ∨ (β → α)] ⇔H [{(α→ β) → β} → α].

Theorem 10.53. The variety generated by the algebras Ldm
3 ,Ldp

3 ,Ldm
4 ,

Ldp
4 ,D1,D2,D3 is defined by the identity:

x ∨ (x→ y) ≈ x→ [x ∨ (y → 1)].
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Corollary 10.54. The logic L(V({Ldm
3 ,Ldp

3 ,Ldm
4 ,Ldp

4 ,D1,D2,D3})) is
defined by

[α ∨ (α→ β)] ⇔H [α→ {α ∨ (β → ⊤)}].

Theorem 10.55. The variety generated by the algebras Ldm
5 ,Ldp

6 ,Ldm
7 ,

Ldp
8 ,D3 is defined by the identity:

(0 → 1)∗ → (0 → 1) ≈ (0 → 1)′.

Corollary 10.56. The logic L(V({Ldm
5 ,Ldp

6 ,Ldm
7 ,Ldp

8 ,D3})) is defined
by

[(⊥ → ⊤)∗ → (⊥ → ⊤)] ⇔H ∼ (⊥ → ⊤).

Theorem 10.57. The variety generated by the algebras Ldm
1 ,Ldp

1 ,Ldm
2 ,

Ldp
2 ,Ldm

3 ,Ldp
3 , Ldm

4 ,Ldp
4 ,D2 is defined by the identity:

0 → 1 ≈ 1 (FTT identity).

Corollary 10.58. The logic L(V({Ldm
1 ,Ldp

1 ,Ldm
2 ,Ldp

2 ,Ldm
3 ,Ldp

3 ,Ldm
4 ,

Ldp
4 ,D2})) is defined by

⊥ → ⊤ (FTT).

Theorem 10.59. The variety generated by the algebras Ldm
1 ,Ldp

1 ,Ldm
3 ,

Ldp
3 ,Ldm

6 ,Ldp
6 , Ldm

8 ,Ldp
8 ,D1,D2,D3 is defined by the identity:

x ∨ (y → x) ≈ (x ∨ y) → x.

Corollary 10.60. The logic L(V({Ldm
1 ,Ldp

1 ,Ldm
3 ,Ldp

3 ,Ldm
6 ,Ldp

6 ,Ldm
8 ,

Ldp
8 ,D1,D2,D3}) is defined by

[α ∨ (β → α)] ⇔H [(α ∨ β) → α].

Theorem 10.61. The variety generated by the algebras Ldp
1 ,Ldp

3 ,Ldp
6 , Ldp

8

is defined by the identities:

(1) x ∨ (y → x) ≈ (x ∨ y) → x,

(2) x ∨ x′ ≈ 1.

Corollary 10.62. The logic L(V({Ldp
1 ,Ldp

3 ,Ldp
6 ,Ldp

8 })) is defined by

(1) [α ∨ (β → α)] ⇔H [(α ∨ β) → α],

(2) α ∨ ∼ α.
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In view of the above corollary, it is clear that the logic in question does
not have the Disjunction Property.

Theorem 10.63. The variety generated by the algebras Ldm
1 ,Ldm

3 ,Ldm
6 ,

Ldm
8 ,D1,D2,D3 is defined by the identities:

(1) x ∨ (y → x) ≈ (x ∨ y) → x,

(2) x′′ ≈ x.

Corollary 10.64. The logic L(V({Ldm
1 ,Ldm

3 ,Ldm
6 ,Ldm

8 ,D1,D2,D2}))
is defined by

(1) [α ∨ (β → α)] ⇔H [(α ∨ β) → α],

(2) α→H ∼∼ α.

Theorem 10.65. The variety generated by the algebras Ldm
1 ,Ldp

1 ,Ldm
2 ,

Ldp
2 ,Ldm

5 ,Ldp
5 ,Ldm

6 ,Ldp
6 ,Ldm

9 ,Ldp
9 ,D1,D2,D3 is defined by the identity:

x∗ ∨ (x→ y) ≈ (x ∨ y) → y.

Corollary 10.66. The logic L(V({Ldm
1 ,Ldp

1 ,Ldm
2 ,Ldp

2 ,Ldm
5 ,Ldp

5 ,Ldm
6 ,

Ldp
6 ,Ldm

9 ,Ldp
9 ,D1,D2,D2})) is defined by

[α∗ ∨ (α→ β)] ⇔H [(α ∨ β) → β].

Theorem 10.67. V({Ldp
1 ,Ldp

2 ,Ldp
5 ,Ldp

6 ,Ldp
9 }) is defined by the identity:

(1) x∗ ∨ (x→ y) ≈ (x ∨ y) → y,

(2) x ∨ x′ ≈ 1.

Corollary 10.68. The logic L(V({Ldp
1 ,Ldp

2 ,Ldp
5 ,Ldp

6 ,Ldp
9 })) is defined

by

(1) [α∗ ∨ (α→ β)] ⇔H [(α ∨ β) → β],

(2) α ∨ ∼ α.

In view of the above corollary, it is clear that the logic in question does
not have the Disjunction Property.

Theorem 10.69. The variety generated by the algebras Ldm
1 ,Ldm

2 ,Ldm
5 ,

Ldm
6 ,Ldm

9 , D1,D2,D3 is defined by the identity:

(1) x∗ ∨ (x→ y) ≈ (x ∨ y) → y,

(2) x′′ ≈ x.
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Corollary 10.70. The logic L(V({Ldm
1 ,Ldm

2 ,Ldm
5 ,Ldm

6 ,Ldm
9 ,D1,D2,

D3})) is defined by

(1) [α∗ ∨ (α→ β)] ⇔H [(α ∨ β) → β],

(2) α→H ∼∼ α.

Theorem 10.71. The variety generated by the algebras Ldm
5 ,Ldp

5 ,D2 is
defined by the identity:

x ∨ (0 → x) ∨ (y → 1) ≈ x ∨ [(x→ 1) → (x→ y)].

Corollary 10.72. The logic L(V({Ldm
5 ,Ldp

5 ,D2})) is defined by

[α ∨ (⊥ → α) ∨ (β → ⊤)] ⇔H α ∨ [(α→ ⊤) → (α→ β)].

Theorem 10.73. The variety generated by the algebras Ldm
6 ,Ldp

6 ,D2 de-
fined by the identity:

x ∨ y ∨ (x→ y) ≈ x ∨ [(x→ y) → 1].

Corollary 10.74. The logic L(V({Ldm
6 ,Ldp

6 ,D2})) is defined by

α ∨ β ∨ (α→ β) ⇔H α ∨ [(α→ β) → ⊤].

Theorem 10.75. The variety generated by the algebras Ldm
1 ,Ldp

1 ,Ldm
7 ,

Ldp
7 ,D2 is defined by the identity:

x ∨ [(0 → y) → y] ≈ x ∨ [(x→ 1) → y].

Corollary 10.76. The logic L(V({Ldm
1 ,Ldp

1 ,Ldm
7 ,Ldp

7 ,D2})) is defined
by

[α ∨ {(⊥ → β) → β}] ⇔H [α ∨ [(α→ ⊤) → β].

Theorem 10.77. The variety generated by the algebras Ldm
7 ,Ldp

7 ,Ldm
8 ,

Ldp
8 ,D1,D2,D3 is defined by the identity:

x ∨ [x→ (y ∧ (0 → y))] ≈ x→ [(x→ y) → y].

Corollary 10.78. The logic L(V({Ldm
7 ,Ldp

7 ,Ldm
8 ,Ldp

8 ,D1,D2,D3})) is
defined by

[α ∨ [α→ {β ∧ (⊥ → β)}]] ⇔H [α→ [(α→ β) → β].
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Theorem 10.79. The variety generated by the algebras Ldm
8 ,Ldp

8 ,D1,D2,
D3 is defined by the identity:

x ∨ y ∨ [y → (y → x)] ≈ x→ [x ∨ (0 → y)].

It is also defined by the identity:

x ∨ [y → {0 → (y → x)}] ≈ x ∨ y ∨ (y → x).

Corollary 10.80. The logic L(V({Ldm
8 ,Ldp

8 ,D1,D2,D3})) is defined by

[α ∨ β ∨ {β → (β → α)}] ⇔H [α→ {α ∨ (0 → β)}].

It is also defined by:

[α ∨ {β → (0 → (β → α))}] ⇔H [α ∨ β ∨ (β → α)].

Theorem 10.81. The variety generated by the algebras Ldm
7 ,Ldp

7 ,Ldm
8 ,

Ldp
8 ,Ldm

9 ,Ldp
9 , Ldm

10 ,L
dp
10 ,D1,D2,D3 is defined by the identity:

x ∨ (x→ y) ≈ x ∨ [(x→ y) → 1].

Corollary 10.82. The logic L(V({Ldm
7 ,Ldp

7 ,Ldm
8 ,Ldp

8 ,Ldm
9 ,Ldp

9 ,Ldm
10 ,

Ldp
10 ,D1,D2,D3})) is defined by

[α ∨ (α→ β)] ⇔H [α ∨ {(α→ β) → ⊤}].

Theorem 10.83. The variety generated by the algebras 2e,Ldp
7 ,Ldp

8 ,Ldp
9 ,

Ldp
10 is defined by the identities:

(1) x ∨ (x→ y) ≈ x ∨ [(x→ y) → 1],

(2) x ∨ x′ ≈ 1.

Corollary 10.84. The logic L(V({2e,Ldp
7 ,Ldp

8 ,Ldp
9 ,Ldp

10}) is defined by

(1) [α ∨ (α→ β)] ⇔H [α ∨ {(α→ β) → ⊤}],

(2) α ∨ ∼ α.

In view of the above corollary, it is clear that the logic in question does
not have the Disjunction Property.

Theorem 10.85. The variety generated by the algebras Ldm
7 ,Ldm

8 ,Ldm
9 ,

Ldm
10 ,D1,D2,D3 is defined by the identities:

(1) x ∨ (x→ y) ≈ x ∨ [(x→ y) → 1],

(2) x′′ ≈ x.
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Corollary 10.86. The logic L(V({Ldm
7 ,Ldm

8 ,Ldm
9 ,Ldm

10 ,D1,D2,D3}))
is defined by

(1) [α ∨ (α→ β)] ⇔H [α ∨ {(α→ β) → ⊤}],

(2) α→H ∼∼ α.

Theorem 10.87. The variety generated by the algebras Ldm
9 ,Ldp

9 ,Ldm
10 ,

Ldp
10 ,D1 is defined by the identity:

0 → 1 ≈ 0 . (FTF identity)

Corollary 10.88. The logic L(V({Ldm
9 ,Ldp

9 ,Ldm
10 ,L

dp
10 ,D1})) is defined

by

(⊥ → ⊤) ⇔H ⊥. (FTF)

Theorem 10.89. The variety generated by the algebras Ldm
10 ,L

dp
10 ,D1 is

defined by the identity:

x→ y ≈ y → x. (commutative identity)

Corollary 10.90. The logic L(V({Ldm
10 ,L

dp
10 ,D1})) is defined by

(α→ β) ⇔H (β → α). (commutativity)

Theorem 10.91. The variety V(C20) is defined
by

x∗ ≤ x′.

Corollary 10.92. The logic L(V(C20)) is defined by

α∗ →H ∼ α.

Theorem 10.93. The variety V(D2) is defined by

(x→ y)∗ ≈ x ∧ y∗.

Corollary 10.94. The logic L(V(D2) is defined by

(α→ β)∗ ⇔H α ∧ β∗.
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Theorem 10.95. The variety generated by the algebras in {Ldp
i : i =

1, . . . , 8} ∪ {Ldm
i : i = 1, . . . , 8} ∪ {D2} is defined by the identity:

(x→ y)∗ ≈ (x ∧ y∗)∗∗.

It is also defined by

(0 → 1)∗ ≈ 0.

Corollary 10.96. The logic L(V({Ldp
i : i = 1, . . . , 8} ∪ {Ldm

i : i =
1, . . . , 8} ∪ {D2}) is defined by

(α→ β)∗ →H (α ∧ β∗)∗∗.

It is also defined by

(⊥ → ⊤)∗ ⇔H ⊥.

Theorem 10.97. The variety generated by the algebras Ldp
i , i = 1, . . . , 8,

is defined by the identities:

(1) (x→ y)∗ ≈ (x ∧ y∗)∗∗,

(2) x ∨ x′ ≈ 1.

Corollary 10.98. The logic L(V({Ldp
i : i = 1, . . . ,8})) is defined by

(1) (α→ β)∗ ⇔H (α ∧ β∗)∗∗,

(2) α ∨ ∼ α.

In view of the above corollary, it is clear that the logic in question does
not have the Disjunction Property.

Theorem 10.99. The variety generated by the algebras Ldm
i , i = 1, . . . , 8,

and D2 is defined by the identities:

(1) (x→ y)∗ ≈ (x ∧ y∗)∗∗,

(2) x′′ ≈ x.

Corollary 10.100. The logic L(V({Ldm
i : i = 1, . . . ,8} ∪ {D2})), is

defined by

(1) (α→ β)∗ ⇔H (α ∧ β∗)∗∗,

(2) α→H ∼∼ α.
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Theorem 10.101. The variety generated by Ldm
1 ,Ldp

1 ,Ldm
2 ,Ldp

2 ,Ldm
5 ,Ldp

5 ,

Ldm
6 ,Ldp

6 ,D2 is defined by the identity:

x ∨ y ≤ (x→ y) → y.

Corollary 10.102. The logic L(V({Ldm
1 ,Ldp

1 ,Ldm
2 ,Ldp

2 ,Ldm
5 ,Ldp

5 ,Ldm
6 ,

Ldp
6 ,D2})) is defined by

(α ∨ β) →H [(α→ β) → β].

Theorem 10.103. The variety generated by Ldp
1 ,Ldp

2 ,Ldp
5 ,Ldp

6 is defined
by the identity:

(1) x ∨ y ≤ (x→ y) → y,

(2) x ∨ x′ ≈ 1.

Corollary 10.104. The logic L(V({Ldp
1 ,Ldp

2 ,Ldp
5 ,Ldp

6 })) is defined by

(1) (α ∨ β) →H [(α→ β) → β],

(2) α ∨ ∼ α.

In view of the above corollary, it is clear that the logic in question does
not have the Disjunction Property.

Theorem 10.105. The variety generated by Ldm
1 ,Ldm

2 ,Ldm
5 ,Ldm

6 ,D2 is
defined by the identity:

(1) x ∨ y ≤ (x→ y) → y,

(2) x′′ ≈ x.

Corollary 10.106. The logic L(V({Ldm
1 ,Ldm

2 ,Ldm
5 ,Ldp

6 ,D2})) is de-
fined by

(1) (α ∨ β) →H [(α→ β) → β],

(2) α→H ∼∼ α.

The variety V({D1,D2,D3}) was axiomatized in Theorem 7.16. Here
are two more bases for it.
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Theorem 10.107. The variety V({D1,D2,D3}) is defined by the identity:

x ∨ (y → z) ≈ (x ∨ y) → (x ∨ z) (Strong JID).

It is also defined by the identity:

x′∗′∗ ≈ x.

Corollary 10.108. The logic L(V({D1,D2,D3})) is defined by

(α ∨ (β → γ)) ⇔H [(α ∨ β) → (α ∨ γ)].

It is also defined by the identity:

(∼ ((∼ α)∗))∗ ⇔H α.

Theorem 10.109. The variety generated by Ldm
2 ,Ldp

2 ,D2 is defined by the
identity:

(x→ y) → x ≈ x.

Corollary 10.110. The logic L(V({Ldm
2 ,Ldp

2 ,D2})) is defined by

((α→ β) → α) ⇔H α.

V(D2) was axiomatized in Theorem 7.18. Here are some more bases for
it.

Theorem 10.111. V(D2) is defined by the identity:

x ∨ y ≈ (x→ y) → y.

It is also defined by the identities:

(1) x ∨ (y → z) ≈ (x ∨ y) → (x ∨ z),

(2) (x→ y) → x ≈ x.

It is also defined by the identity:

x ∨ (x→ y) ≈ x ∨ ((x ∨ y) → 1).

Corollary 10.112. The logic L(V(D2)) is axiomatized by

(α ∨ β) ⇔H ((α→ β) → β).
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This logic has an interesting property in that ∨ is definable in terms of →.
It is also axiomatized by

(1) (α ∨ (β → γ)) ⇔H [(α ∨ β) → (α ∨ γ)],

(2) ((α→ β) → α) ⇔H α.

It is also axiomatized by

(α ∨ (α→ β)) ⇔H [α ∨ {(α ∨ β) → ⊤}].

Theorem 10.113. The variety generated by Ldm
1 ,Ldp

1 ,Ldm
2 ,Ldp

2 ,Ldm
9 ,

Ldp
9 ,D1,D2,D3 is defined by the identity:

x→ (y → z) ≈ y → (x→ z).

Corollary 10.114. The logic L(V({Ldm
1 ,Ldp

1 ,Ldm
2 ,Ldp

2 ,Ldm
9 ,Ldp

9 ,D1,
D2,D3})) is defined by

[α→ (β → γ)] ⇔H [β → (α→ γ)].

Theorem 10.115. The variety generated by Ldm
1 ,Ldp

1 ,Ldm
2 ,Ldp

2 ,Ldm
5 ,

Ldp
5 ,D2 is defined by the identity:

(x→ y) → z ≤ ((y → x) → z) → z.

Corollary 10.116. The logic L(V({Ldm
1 ,Ldp

1 ,Ldm
2 ,Ldp

2 ,Ldm
5 ,Ldp

5 ,
D2})) is defined by

[(α→ β) → γ] →H [((β → α) → γ) → γ].

We note that a new extension of each of the logic defined in this section
is obtained by adding the axiom α′′ ⇔H α, as an extension of the logic
DMSH. Similarly, the addition of the axiom: α∨α′ yields new extensions
to the logics, over the logic DPCSH, defined in the preceding corollaries.

We conclude this section by remarking that all the logics described in
this section are discriminator logics and also are decidable.

11. Logics corresponding to subvarieties of regular
De Morgan semi-Heyting algebras of level 1

In this section, we present axiomatizations for logics corresponding to
several subvarieties of the variety RDMSH1 of regular De Morgan semi-
Heyting algebras of level 1. The algebraic results mentioned (or referred
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to) in this section were proved in [32]. Recall that DMSH1 denotes the
logic corresponding to the variety DMSH1. The following corollary is im-
mediate from Theorem 5.9 and definitions.

In what follows, V (or L(V)) denotes the logic corresponding to the
variety V.

Recall that the variety DMSH1 was defined in Section 10.

Corollary 11.1.

(a) The logic DMSH1 is defined, relative to DMSH, by

α ∧ (∼ α)∗ ⇔H [∼ (α ∧ (∼ α)∗)]∗.

(b) The logic RDMSH1 is defined, relative to DMSH1, by

(α ∧ α+) →H (β ∨ β∗).

(c) The logic RDMH1 is defined, relative to RDMSH1, by

(α ∧ β) → α.

(d) The logic RDMcmSH1 is defined, relative to RDMSH1, by

(α→ β) →H (β → α).

It follows from Theorem 10.6 that the logic RDMH1 is decidable. How-
ever, the following problems are open.

PROBLEM 4: Is the logic RmsH1 decidable?

PROBLEM 5: Is the logic RmsSH1 decidable?

Let L ∈ DHMSH. We say L is pseudocommutative if L satisfies the
identity:

(PCM) x∗ → y∗ ≈ y∗ → x∗.

RDMpcmSH denotes the variety of regular De Morgan pseudocommutative
semi-Heyting algebras.

The following corollary is immediate from Theorem 5.9 and the above
definition.
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Corollary 11.2. The logic L(RDMpcmSH1) is defined by

(α∗ → β∗) ⇔H (β∗ → α∗).

Theorem 11.3 ([32]). RDMpcmSH1 = V(Ldm
9 ,Ldm

10 ,D1).

Corollary 11.4. The logic L(RDMpcmSH1) is decidable.

In the rest of this section, unless otherwise stated, the phrase “defined,
modulo RDMSH1, by” is abbreviated to the phrase “defined by” in the
context of varieties. Similarly, the phrase “defined, as an extension of
the logic RDMSH1, by” is also abbreviated to the phrase “defined by”
in the case of logics.

The theorems that appear in the rest of this section were proved in [32].
Each of the corollaries given below follows from the theorem immediately
preceding it and Theorem 5.9.

Here is another axiomatization for RDMpcmSH.

Theorem 11.5. The variety RDMpcmSH is defined by

(x→ y)∗ ≈ (y → x)∗.

Corollary 11.6. The logic L(RDMpcmSH) is defined by

(α→ β)∗ ⇔H (β → α)∗.

Theorem 11.7. The variety V(Ldm
1 ,Ldm

2 ,Ldm
3 ,Ldm

4 ,D2,D3) is defined
by

(0 → 1)+ → [∼ {(0 → 1)∗}]∗ ≈ 0 → 1.

Corollary 11.8. The logic L(V(Ldm
1 ,Ldm

2 ,Ldm
3 ,Ldm

4 ,D2,D3)) is de-
fined by

((⊥ → ⊤)+ → [∼ {(⊥ → ⊤)∗}]∗) ⇔H (α→ ⊤).

The variety V(D1,D2,D3)(= DQDBSH) was axiomatized earlier.
Here are some more bases for V(D1,D2,D3).

Theorem 11.9. Each of the following identities is a base for the variety
V(D1,D2,D3):

(1) x→ y ≈ y∗ → x∗, (Law of contraposition)

(2) [{x ∨ (x→ y∗)} → (x→ y∗)] ∨ (x ∨ y∗) = 1.
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Corollary 11.10.

(1) The logic L(V(D1,D2,D3)) is defined by

(α→ β) ⇔H (β∗ → α∗).

(2) The logic L(V(D1,D2,D3)) is also defined by

[{α ∨ (α→ β∗)} → (α→ β∗)] ∨ (α ∨ β∗).

Theorem 11.11. The variety V(Ldm
1 ,Ldm

2 ,Ldm
5 ,Ldm

6 ,Ldm
9 ,D1,D2,

D3) is defined by

x→ y∗ ≈ y → x∗.

Corollary 11.12. The logic L(V(Ldm
1 ,Ldm

2 ,Ldm
5 ,Ldm

6 ,Ldm
9 ,D1,D2,

D3)) is defined by

(α→ β∗) ⇔H (β → α∗).

Theorem 11.13. The variety V(Ldm
7 ,Ldm

8 ,Ldm
9 ,Ldm

10 ,D1,D2,D3) is de-
fined by

x ∨ (x→ y) ≈ x ∨ [(x→ y) → 1].

Corollary 11.14. The logic L(V(Ldm
7 ,Ldm

8 ,Ldm
9 ,Ldm

10 ,D1,D2,D3)) is
defined by

[α ∨ (α→ β)] ⇔H [α ∨ {(α→ β) → ⊤}],

Theorem 11.15. The variety V(Ldm
7 ,Ldm

8 ,D2) is defined by

(1) x ∨ (x→ y) ≈ x ∨ [(x→ y) → 1],

(2) (0 → 1)∗∗ ≈ 1.

Corollary 11.16. The logic L(V(Ldm
7 ,Ldm

8 ,D2)) is defined by

(1) [α ∨ (α→ β)] ⇔H [α ∨ {(α→ β) → ⊤}],

(2) (⊥ → ⊤)∗∗.

Theorem 11.17. The variety V(2e,Ldm
7 ,Ldm

8 ,Ldm
9 ,Ldm

10 ) is defined by

(1) x ∨ (x→ y) ≈ x ∨ [(x→ y) → 1],

(2) x∗′ ≈ x∗∗ (⋆-regular).

We caution the reader that in [29], (2) was referred to as “regular”.
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Corollary 11.18. The logic L(V(2e,Ldm
7 ,Ldm

8 ,Ldm
9 ,Ldm

10 )) is defined by

(1) [α ∨ (α→ β)] ⇔H [α ∨ {(α→ β) → 1}],

(2) ∼ (α∗) ⇔H α∗∗.

Theorem 11.19. The variety V(2e,Ldm
9 ,Ldm

10 ) is defined by

(1) x ∨ (x→ y) ≈ x ∨ [(x→ y) → 1],

(2) x∗′ ≈ x∗∗,

(3) (0 → 1) ∨ (0 → 1)∗ ≈ 1.

Corollary 11.20. The logic L(V(2e,Ldm
9 ,Ldm

10 )) is defined by

(1) [α ∨ (α→ β)] ⇔H [α ∨ {(α→ β) → ⊤}],

(2) ∼ (α∗) ⇔H α∗∗,

(3) (⊥ → ⊤) ∨ (⊥ → ⊤)∗.

Theorem 11.21. The variety V(Ldm
9 ,Ldm

10 ) is defined by

(1) x ∨ (x→ y) ≈ x ∨ [(x→ y) → 1],

(2) x∗′ ≈ x∗∗,

(3) (0 → 1)∗ ≈ 1.

Corollary 11.22. The logic L(V(Ldm
9 ,Ldm

10 )) is defined by

(1) [α ∨ (α→ β)] ⇔H [α ∨ {(α→ β) → 1}],

(2) ∼ (α∗) ⇔H α∗∗,

(3) (⊥ → ⊤)∗.

Theorem 11.23. The variety V(Ldm
1 ,Ldm

2 ,Ldm
3 ,Ldm

4 ,Ldm
5 ,Ldm

6 ,Ldm
7 ,

Ldm
8 ) is defined by

(1) x∗′ ≈ x∗∗,

(2) (0 → 1)∗∗ ≈ 1.

Corollary 11.24. The logic L(V((Ldm
1 ,Ldm

2 ,Ldm
3 ,Ldm

4 ,Ldm
5 ,Ldm

6 ,Ldm
7 ,

Ldm
8 ) is defined by

(1) ∼ (α∗) ⇔H α∗∗.

(2) (⊥ → ⊤)∗∗.
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Theorem 11.25. The variety V(Ldm
1 ,Ldm

2 ,Ldm
3 ,Ldm

4 ,D2) is defined by

(1) (0 → 1) ∨ (0 → 1)∗ ≈ 1,

(2) (0 → 1)∗∗ ≈ 1.

Corollary 11.26. The logic L(V((Ldm
1 ,Ldm

2 ,Ldm
3 ,Ldm

4 ,D2)) is defined
by

(1) (⊥ → ⊤) ∨ (⊥ → ⊤)∗,

(2) (⊥ → ⊤)∗∗.

Theorem 11.27. The variety V(Ldm
1 ,Ldm

3 ,D1,D2,D3) is defined by

(1) x ∨ (y → x) ≈ (x ∨ y) → x,

(2) (0 → 1) ∨ (0 → 1)∗ ≈ 1.

Corollary 11.28. The logic L(V((Ldm
1 ,Ldm

3 ,D1,D2,D3)) is defined by

(1) [α ∨ (β → α)] ⇔H [(α ∨ β) → α],

(2) (⊥ → ⊤) ∨ (⊥ → ⊤)∗.

Theorem 11.29. The variety V(Ldm
1 ,Ldm

3 ,D2) is defined by

(1) x ∨ (y → x) ≈ (x ∨ y) → x,

(2) (0 → 1) ∨ (0 → 1)∗ ≈ 1,

(3) (0 → 1)∗∗ ≈ 1.

Corollary 11.30. The logic L(V((Ldm
1 ,Ldm

3 ,D2)) is defined by

(1) [α ∨ (β → α)] ⇔H [(α ∨ β) → α],

(2) (⊥ → ⊤) ∨ (⊥ → ⊤)∗,

(3) (⊥ → ⊤)∗∗.

Theorem 11.31. The variety V(Ldm
1 ,Ldm

2 ,Ldm
8 ,D1,D2,D3) is defined

by

y ∨ (y → (x ∨ y)) ≈ (0 → x) ∨ (x→ y).

Corollary 11.32. The logic L(V((Ldm
1 ,Ldm

2 ,Ldm
8 ,D1,D2,D3)) is de-

fined by

[β ∨ (β → (α ∨ β))] ⇔H [(⊥ → α) ∨ (α→ β)].
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Theorem 11.33. The variety V(Ldm
8 ,D1,D2,D3) is defined by

x ∨ [y → (0 → (y → x))] ≈ x ∨ y ∨ (y → x).

Corollary 11.34. The logic L(V(Ldm
8 ,D1,D2,D3)) is defined by

[α ∨ {β → (⊥ → (β → α))}] ⇔H [α ∨ β ∨ (β → α)].

Theorem 11.35. The variety V(Cdm) is defined by

x ∧ x′ ≤ y ∨ y′. (Kleene identity)

Corollary 11.36. The logic L(V(Cdm)) is defined by

(α ∧ ∼ α) →H (β ∨ ∼ β. (Kleene identity)

Theorem 11.37. The variety V(Ldm
10 ) is defined by

(1) x ∧ x′ ≤ y ∨ y′, (Kleene identity)

(2) x→ y ≈ y → x.

Corollary 11.38. The logic L(V(L
dm
10 )) is defined by

(1) (α ∧ ∼ α) →H (β ∨ ∼ β), (Kleene identity)

(2) α→ β ⇔H β → α.

V(D2) was axiomatized in Section 7. Here are some more bases for it,
but relative to RDMH1.

Theorem 11.39. Each of the following identities is a base for V(D2), mod
RDMH1:

(1) [y → {0 → (y → x)}] ≈ y ∨ (y → x).

(2) x ∨ (y → z) ≈ (x ∨ y) → (x ∨ z).

(3) [{x ∨ (x→ y∗)} → (x→ y∗)] ∨ x ∨ y∗ ≈ 1.

Corollary 11.40. Each of the following axioms defines the logic L(V(D2),
relative to RDMH1:

(1) [β → {⊥ → (β → α)}] ⇔H [β ∨ (β → α)],

(2) [α ∨ (β → γ)] ⇔H [(α ∨ β) → (α ∨ γ)],

(3) [{α ∨ (α→ β∗)} → (α→ β∗)] ∨ α ∨ β∗.
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V(D1) was axiomatized in Section 8. Here are more bases for it. Let
RDMcmSH1 denote the subvariety of RDMSH1 defined by: x → y ≈ y →
x.

Theorem 11.41. Each of the following identities is an equational base for
V(D1), mod RDMcmSH1:

(1) y ∨ (y → (x ∨ y)) ≈ (0 → x) ∨ (x→ y),

(2) x ∨ [y → (y → x)∗] ≈ x ∨ y ∨ (y → x),

(3) [{x ∨ (x→ y∗)} → (x→ y∗)] ∨ x ∨ y∗ ≈ 1,

(4) x ∨ (y → z) ≈ (x ∨ y) → (x ∨ z).

Corollary 11.42. Each of the following axioms defines the logic L(V(D1)),
relative to RDMcmSH1:

(1) [β ∨ (β → (α ∨ β))] ⇔H [(⊥ → α) ∨ (α→ β)],

(2) [α ∨ {β → (β → α)∗}] ⇔H [α ∨ β ∨ (β → α)],

(3) [{α ∨ (α→ β∗)} → (α→ β∗)] ∨ α ∨ β∗,

(4) [α ∨ (β → γ)] ⇔H [(α ∨ β) → (α ∨ γ)].

We conclude this section with the remark that all logics introduced
in this section are discriminator logics as their corresponding varieties are
discriminator varieties.

12. Extensions of the logic J IDSH1

Algebras closely related to DStSH-algebras, called “JI-distributive semi-
Heyting algebras”, were introduced in [33].

An algebra A in DQDSH is JI-distributive if A satisfies:

(JID) x′ ∨ (y → z) ≈ (x′ ∨ y) → (x′ ∨ z).

((restricted) Join over Implication Distributivity).

We note that the identity (JID) is obtained by slightly weakening the
identity (Strong JID) that has appeared earlier in Theorem 10.107. Let
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JIDSH denote the variety of JI-distributive DQDSH-algebras and let JIDSH1

(or JID1, for short) denote the subvariety of JIDSH of level 1.
In what follows, V (or L(V)) denotes the logic corresponding to the

subvariety V.
In this section we present axiomatizations of the logics corresponding

to the subvarieties of JIDSH1 which we denote simply by JID1.

Corollary 12.1. The logic J ID1 corresponding to JID1 is defined, as an
extension of DQDSH, by

(a) (∼ α ∨ (β → γ)) ⇔H ((∼ α ∨ β) → (∼ α ∨ γ)),

(b) α ∧ (∼ α)∗ ⇔H [∼ (α ∧ (∼ α)∗)]∗.

Let DSt [DStH] denote the variety of dually Stone semi-Heyting [Heyt-
ing] algebras. The following theorem was proved in [33, Corollary 5.10].

Theorem 12.2. JID1 = DSt ∨ V(D1,D2,D3).

The preceding Theorem leads us naturally to raise the following open
problems.

PROBLEM 6: Is the logic DStH decidable?

We conjecture that the answer to PROBLEM 5 is in the positive.
More generally, we can ask the following:

PROBLEM 7: Is the logic DStSH is decidable?

We let JIDL1 denote the subvariety of JID1 defined by

(L) (x→ y) ∨ (y → x) ≈ 1.

The results in the rest of this section depend on the corresponding
algebraic results of [33]. The relevant results, however, are stated here for
the convenience of the reader. The following corollary is immediate from
the above definitions in view of Theorem 5.9.

Corollary 12.3. The logic J IDL1 corresponding to JIDL1 is defined,
modulo J ID1, by

(α→ β) ∨ (β → α).
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Let DStL denote the subvariety of DSt defined by the identity (L) and
DStHC denote the subvariety of DStH generated by its chains.

Theorem 12.4. [33]. JIDL1 = DStHC ∨ V(D2).

For n ∈ N, let Cdp
n denote the n-element DStH-chain (= DPCH-chain)

denotes the variety generated by Cdp
n . (Note that Cdp

3 = Ldp
1 .)

Since the variety of Boolean algebras is the smallest non-trivial sub-
variety of JIDL1, we denote by LV

+(JIDL1) the latttice of non-trivial
subvarieties of JIDL1.

The following theorem was proved in [33, Corollary 7.1].

Theorem 12.5.

(1) LV
+(JIDL1) ∼= [(ω + 1) × 2], where × represents the direct product.

(2) JIDL1 and DStHC are the only two elements of infinite height in the
lattice LV

+(JIDL1).

(3) V ∈ LV
+(JIDL1) is of finite height if and only if V is either V(D2)

or V(Cdp
n ), for some n ∈ N \ {1}, or V(Cdp

m ) ∨ V(D2), for some
m ∈ N \ {1}.

The following corollary is immediate from the preceding theorem and
Theorem 5.9.

Corollary 12.6. The logic J IDL1 has the finite model property and
hence it is decidable.

Bases for all subvarieties of JIDL1 were given in [33]. The theorems
presented below are taken from [33] and each of the corollaries given below
follows from the theorem that precedes it and Theorem 5.9.

In the rest of this section, the phrase “defined, modulo JIDL1, by” is ab-
breviated to “defined by”, in the context of varieties. Similarly, the phrase
“defined, as an extension of the logic J IDL1, by” is also abbreviated to
the phrase “defined by” in the case of logics.

The theorems that appear below were proved in [33]. Each of the corol-
laries given below follows from the theorem immediately preceding it and
Theorem 5.9.

Theorem 12.7. The variety DStHC is defined by

x ∨ x′ ≈ 1.
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Corollary 12.8. The logic DStHC is defined by

α ∨ ∼ α.

The variety V(D2) was axiomatized earlier. Here is another one.

Theorem 12.9. The variety V(D2) is defined by

x′′ ≈ x.

Corollary 12.10. The logic L(V(D2)) is defined by

α⇔H ∼∼ α.

Let n ∈ N such that n ≥ 2.

Theorem 12.11. The variety V(Cdp
n ) ∨ V(D2) is defined by

(En) x1 ∨ x2 ∨ · · · ∨ xn ∨ (x1 → x2) ∨ (x2 → x3) ∨ · · · ∨ (xn−1 → xn) = 1.

Corollary 12.12. The logic L(V(Cn
dp) ∨ V(D2)) is defined by

(En) α1 ∨ α2 ∨ · · · ∨ αn ∨ (α1 → α2) ∨ (α2 → α3) ∨ · · · ∨ (αn−1 → αn).

Theorem 12.13. The variety V(Cdp
n ) is defined by

(1) x ∨ x′ ≈ 1,

(2) x1 ∨ x2 ∨ · · · ∨ xn ∨ (x1 → x2) ∨ (x2 → x3) ∨ · · · ∨ (xn−1 → xn) = 1.

Corollary 12.14. The logic L(V(Cdp
n )) is defined by

(a) α ∨ ∼ α,

(Cn) α1 ∨ α2 ∨ · · · ∨ αn ∨ (α1 → α2) ∨ (α2 → α3) ∨ · · · ∨ (αn−1 → αn).

Here are two more axiomatizations for the logic L(V(Cdp
3 ) ∨ V(D2)).

Theorem 12.15. The variety V(Cdp
3 ) ∨ V(D2) is defined by

x ∧ x+ ≤ y ∨ y∗. (Regularity)

It is also defined by

x ∧ x′ ≤ y ∨ y∗.
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Corollary 12.16. The logic L(V(Cdp
3 ) ∨ V(D2)) is defined by

(α ∧ α+) →H (β ∨ β∗).

It is also defined by

(α ∧ ∼ α) →H (β ∨ β∗).

Recall that Ldp
1 = Cdp

3 . The logic L(V(Ldp
1 )) is axiomatized in Corol-

lary 7.11. Here is yet another axiomatization for it.

Theorem 12.17. The variety V(Ldp
1 ) is defined by

(1) x ∧ x+ ≤ y ∨ y∗ (Regularity),

(2) x∗′ = x∗∗.

Corollary 12.18. The logic L(V(Ldp
1 )) is defined by

(1) (α ∧ α+) →H (β ∨ β∗),

(2) ∼ α∗ →H α∗∗.

We note that the extensions of J IDL1 are all decidable.
We conclude this section with a partial poset of subvarieties of DQDSH

discussed in the last sections (Figure 5). Its dual will give the partial poset
of the axiomatic extensions of the logic DQDSH. Note that the links in
the poset do not, in general, represent the covers.

13. Concluding remarks and open problems

It is, perhaps, worthwhile to mention here that we know from [29] that
every simple algebra in RDQDStH1 is quasiprimal. Of all the 25 simple
algebras in RDQDStSH1 (Section 7), 2e, 2̄e, and Li, i = 5, 6, 7, 8, and
D3 are primal algebras and the rest, except D1 and D2, are semiprimal
algebras.

We will now collect here all the open problems that were mentioned in
the earlier sections.

PROBLEM 1: Describe the structure of the lattice of subvarieties of the
variety BDQDSH.

PROBLEM 2: Is the variety DQDStH1 generated by its finite members?

PROBLEM 3: Is the variety DQDStSH1 generated by its finite members?



640 Juan M. Cornejo, Hanamantagouda P. Sankappanavar

V(2, 2̄)

RDPCStSH1=
V(Cdp

10 ) =
RDStStSH1

RDMSH1 =
RDMStSH1 =

V(Cdm
10 ∪{D1,D2,D3})

RDStSH1=
RDStSH=
RDPCSH

DMSH1 =
DMStSH1

RDQDStSH1 DStSH1 =
DStSH

DMStSH RDMSH RDQDSH1 JIDSH1

DMSH RDQDSH DPCSH JIDSH

DQDSH

Figure 5. Partial poset of subvarieties of DQDSH

PROBLEM 4: Is the logic RmsH1 decidable?

PROBLEM 5: Is the logic RmsSH1 decidable?

PROBLEM 6: Is the logic DStH decidable?

PROBLEM 7: Is the logic DStSH decidable?

We will add a few more problems of interest:

PROBLEM 8: Is RDQDStH = BRDQDStH ?
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PROBLEM 9: Is RDQDSH = BRDQDSH?

PROBLEM 10: Determine the subvarieties of DQDStSH1 that have Amal-
gamation Property.

PROBLEM 11: Is DPCSH = SBDPCSH?

We conclude the paper by mentioning a few open-ended problems for
future research.

Investigate the extensions of the logic DHMSH in relation to, among
others, the following:

(a) Decidability,

(b) Various interpolation properties,

(c) Beth’s Definability property (or equivalently, “the epimorphisms are
surjective” property for the corresponding variety),

(d) Disjunction property,

(e) Finite model property,

(f) Finite embeddability,

(g) Structural completeness.
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